Experimental Study of High-Speed Milling Hardened Steel 7CrSiMnMoV with Large-Ball Mill Cutter

2012 ◽  
Vol 500 ◽  
pp. 32-37
Author(s):  
K.P. Zhang ◽  
Cheng Yong Wang ◽  
Ying Ning Hu ◽  
Yue Xian Song

7CrSiMnMoV (HRC65) hardened steel mold was cutted to investigate the effects of cutting parameters (cutting speed, feed speed, radial cutting depth, axial cutting depth) on cutting force and cutting temperature. Cutting was done with the ball-mill tool coating with TiAlN and without coolant with a high-speed. The aim of this study is putting forward the principle of reasonable choice of cutting parameters and optimizing cutting parameters.

2015 ◽  
Vol 667 ◽  
pp. 9-14
Author(s):  
Guang Jun Chen ◽  
Liang Wang ◽  
Bai Ting He ◽  
Ling Guo Kong ◽  
Xiao Qin Zhou

The cutting vibration has a great influence on the processing quality of Hardened steel. The research conducted in this paper is about how the cutting parameters influence the cutting vibration amplitude when the hardened steel is cut. The experiments were performed on CNC lathe CAK4085 with PCBN tool, where the cutting speed, feed rate, cutting depth and corner radius had been orthogonally combined. The cutting materials were hardened steel Cr12MoV and GCr15 whose hardness is HRC50-52 and HRC62-64. The cutting vibration amplitude under different group parameters was collected by electric eddy current sensors. An analysis about the influence rule of cutting parameters on cutting vibration amplitude had been made. With the increase of cutting speed, vibration amplitude will increase first, and then decrease. With the appropriate increase of feed rate, vibration amplitude will be reduced. With the increase of cutting depth and corner radius, vibration amplitude will both increase. This research can provide reference for improving cutting quality.


2011 ◽  
Vol 287-290 ◽  
pp. 104-107
Author(s):  
Lian Qing Ji ◽  
Kun Liu

The history and application of the FEA are briefly presented in this paper. Several key technologies such as the building of material model, the establishment of the chip - tool friction model as well as meshing are described. Taking the high-speed cutting of titanium alloy (Ti - 10V - 2Fe - 3Al) as an example , reasonable cutting tools and cutting parameters are determinted by simulating the influences of cutting speed, cutting depth and feeding rate on the cutting parameters using FEA.


2012 ◽  
Vol 576 ◽  
pp. 60-63 ◽  
Author(s):  
N.A.H. Jasni ◽  
Mohd Amri Lajis

Hard milling of hardened steel has wide application in mould and die industries. However, milling induced surface finish has received little attention. An experimental investigation is conducted to comprehensively characterize the surface roughness of AISI D2 hardened steel (58-62 HRC) in end milling operation using TiAlN/AlCrN multilayer coated carbide. Surface roughness (Ra) was examined at different cutting speed (v) and radial depth of cut (dr) while the measurement was taken in feed speed, Vf and cutting speed, Vc directions. The experimental results show that the milled surface is anisotropic in nature. Surface roughness values in feed speed direction do not appear to correspond to any definite pattern in relation to cutting speed, while it increases with radial depth-of-cut within the range 0.13-0.24 µm. In cutting speed direction, surface roughness value decreases in the high speed range, while it increases in the high radial depth of cut. Radial depth of cut is the most influencing parameter in surface roughness followed by cutting speed.


2013 ◽  
Vol 834-836 ◽  
pp. 861-865 ◽  
Author(s):  
Yong Shou Liang ◽  
Jun Xue Ren ◽  
Yuan Feng Luo ◽  
Ding Hua Zhang

An experimental study was conducted to determine cutting parameters of high-speed milling of Ti-17 according to their effects on residual stresses. First, three groups of single factor experiments were carried out to reveal the effects of cutting parameters on residual stresses. Then sensitivity models were established to evaluate the influence degrees of cutting parameters on residual stresses. After that, three criteria were proposed to determine cutting parameters from experimental parameter ranges. In the experiments, the cutting parameter ranges are recommended as [371.8, 406.8] m/min, [0.363, 0.412] mm and [0, 0.018] mm/z for cutting speed, cutting depth and feed per tooth, respectively.


2012 ◽  
Vol 468-471 ◽  
pp. 397-400
Author(s):  
Yan Hai Tang ◽  
Jin Bing Hu ◽  
Ling Yang ◽  
Pei Xiang He

The traditional removal method of a vespiary is labor-costing with characteristics of low efficiency and safety. According to the work high above the ground with hidden risk of the vespiary removal, a mechanical vespiary exsector was designed. The exsector is driven by a high speed motor, and the vespiary is removed by a cutting wire with high revolution speed. The cutting part can rotate 90 through drawing a pulling rope. A 2-layer sealing mechanism is operated through another pulling rope. The vespiary exsector has overall characteristics of small scale, light weight and good dexterity. Orthogonal experiment results show that factors of cutting speed and feed speed significantly contribute the width of cutting slot at the significance levels of 0.01 and 0.05 respectively, and the optimum cutting parameters are: cutting speed 10000rpm, feed speed 0.04m/s and diameter of the cutting wire 2mm.


2009 ◽  
Vol 69-70 ◽  
pp. 418-422
Author(s):  
L.D. Wu ◽  
Cheng Yong Wang ◽  
D.H. Yu ◽  
Yue Xian Song

Hardened steel P20 at 50 HRC is milled at high speed by TiN coated and TiAlN coated solid carbide straight end mills, and the cutting forces and tool wear are measured. The result shows that TiAlN coated tool is more suitable for cutting hardened steel at high speed. Then the hardened steel is milled under different cutting parameters. It is indicated that the effect of cutting speed on cutting forces is small, but the effect of cutting speed on machine vibration should be considered. Increase feed per tooth or radial depth of cut will increase the cutting forces.


2010 ◽  
Vol 431-432 ◽  
pp. 559-563
Author(s):  
Hai Rong Wu ◽  
Guo Qin Huang ◽  
Xi Peng Xu

An experimental study was carried out to investigate the effects of cutting parameters on cutting force and temperature in cutting of hardened W18Cr4V with PCBN cutter. Three components of cutting force were recorded by a strain-gauge dynamometer and the cutting temperature was measured by a nature thermocouple of tool-workpiece. The cutting parameters were arranged by orthogonal method. It is shown that the cutting temperature increased with each of the three cutting parameters and the main effecting factor is feeding speed. The three components of cutting force increased greatly with an increase in feeding speed and cutting depth. But the forces decreased a little as cutting speed increased. The main and axial cutting forces depend mainly on cutting depth whereas the radius force is mainly influenced by feeding speed.


2014 ◽  
Vol 800-801 ◽  
pp. 9-14
Author(s):  
Bang Xi Dong ◽  
Ying Ning Hu ◽  
Shan Shan Hu ◽  
Xi Huang

High speed machining of the corner of hardened steel mould has a great influence to the entire product performance of the mould. In this paper, with the single factor experiments, the influence of feed per tooth, cutting speed and angle of the corner to the cutting forces, the vibration value and the surface roughness were analyzed. And the cutting parameters were optimized. The cutting forces, vibration value and surface roughness value of the corner of the mould reached the minimum value when the cutting speed was 80 m/min and the feed per tooth was 0.006 mm/z in the experiment. The surface quality of corner with angle of 90o was better than the corner with angle of 60o and 120o with various milling parameters.


2012 ◽  
Vol 468-471 ◽  
pp. 1467-1470 ◽  
Author(s):  
Rui Jie Wang ◽  
Yong Liang Zhang ◽  
Hong Bin Liu ◽  
Mao Hua Du

Experimental study on surface finish of high speed mill of hardened 45 steel was carried out with PCBN tool. Cutting parameters studied include different cutting depth, cutting speed and feeding speed. Surface finish after cutting were measured and compared with that of grinding. Experimental results showed that for high speed milling of hardened 45 steel, the surface finish can be very fine, different cutting parameters all have explicit effect on surface finish.


2013 ◽  
Vol 584 ◽  
pp. 20-23
Author(s):  
Mao Hua Xiao ◽  
Ning He ◽  
Liang Li ◽  
Xiu Qing Fu

The method to measure the cutting speed when high speed milling nickel alloy Inconel 718 based on semi-artificial thermocouple. The cutting parameters, tool wear and so on the cutting temperature were analyzed. The tests showed that the temperature was gradually increased with the increase of cutting speed. The cutting speed must be more than 600m/min, when the ceramic tools would perform better cutting performance in the high-speed milling nickel-based superalloy. In order to achieve more efficient machining, milling speed can be increased to more than 1000m/min. The impact amount of Radial depth of cut and feed per tooth were relatively small.


Sign in / Sign up

Export Citation Format

Share Document