Evaluating Water Coning Control for Horizontal Well in Bottom-Water Sandstone Reservoirs by Numerical Method

2012 ◽  
Vol 524-527 ◽  
pp. 292-296
Author(s):  
Rong Wang ◽  
Kui Zhang ◽  
Yong Gang Duan ◽  
Ting Kuan Cao

Horizontal well is the main technology to develop bottom-water sandstone reservoirs. Water coning has a significant influence on development effect, and shut-in coning control is one of coning suppression methods. Based on the geological model of a given oilfield, this paper has made an evaluation of water coning control by numerical simulation. It can be concluded that the method of shut-in coning control is effective for low water cut wells. When shutting in, the lower the water cut is, the greater decline extent of water cut can be obtained and the higher cumulative oil production can be achieved after well reopening. The longer the close time is, the better water coning control effect can be acquired, however it will affect oil production undoubtly. When horizontal well enters into high water cut stage, shut-in coning control not only has almost no effect, but also has a negative impact on the normal oil production.

Author(s):  
Jie Tan ◽  
Ying-xian Liu ◽  
Yan-lai Li ◽  
Chun-yan Liu ◽  
Song-ru Mou

AbstractX oilfield is a typical sandstone reservoir with big bottom water in the Bohai Sea. The viscosity of crude oil ranges from 30 to 425 cp. Single sand development with the horizontal well is adopted. At present, the water content is as high as 96%. The water cut of the production well is stable for a long time in the high water cut period. The recoverable reserves calculated by conventional methods have gradually increased, and even the partial recovery has exceeded the predicted recovery rate. This study carried out an oil displacement efficiency experiment under big water drive multiple to accurately understand an extensive bottom water reservoir's production law in an ultra-high water cut stage. It comprehensively used the scanning electron microscope date, casting thin section, oil displacement experiment, and production performance to analyze the change law of physical properties and relative permeability curve from the aspects of reservoir clay minerals, median particle size, pore distribution, and pore throat characteristics. Therefore, the development law of horizontal production wells in sandstone reservoirs with big bottom water is understood. It evaluates the ultimate recovery of sandstone reservoirs with big bottom water. It provides a fundamental theoretical basis and guidance for dynamic prediction and delicate potential tapping of sandstone reservoirs with big bottom water at a high water cut stage.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zhiwang Yuan ◽  
Zhiping Li ◽  
Li Yang ◽  
Yingchun Zhang

When a conventional waterflooding characteristic curve (WFCC) is used to predict cumulative oil production at a certain stage, the curve depends on the predicted water cut at the predicted cutoff point, but forecasting the water cut is very difficult. For the reservoirs whose pressure is maintained by water injection, based on the water-oil phase seepage theory and the principle of material balance, the equations relating the cumulative oil production and cumulative water injection at the moderately high water cut stage and the ultrahigh water cut stage are derived and termed the Yuan-A and Yuan-B curves, respectively. And then, we theoretically analyze the causes of the prediction errors of cumulative oil production by the Yuan-A curve and give suggestions. In addition, at the ultrahigh water cut stage, the Yuan-B water cut prediction formula is established, which can predict the water cut according to the cumulative water injection and solve the difficult problem of water cut prediction. The application results show Yuan-A and Yuan-B curves are applied to forecast oil production based on cumulative water injection data obtained by the balance of injection and production, avoiding reliance on the water cut forecast and solving the problems of predicting the cumulative oil production of producers or reservoirs that have not yet shown the decline rule. Furthermore, the formulas are simple and convenient, providing certain guiding significance for the prediction of cumulative oil production and water cut for the same reservoir types.


Author(s):  
Yanlai Li ◽  
Jie Tan ◽  
Songru Mou ◽  
Chunyan Liu ◽  
Dongdong Yang

AbstractFor offshore reservoirs with a big bottom water range, the water cut rises quickly and soon enters the ultra-high water cut stage. After entering the ultra-high water cut stage, due to the influence of offshore production facilities, there are few potential tapping measures, so it is urgent to explore the feasibility study of artificial water injection development. The quasi-three-dimensional and two-dimensional displacement experiments are designed using the experimental similarity criteria according to the actual reservoir parameters. Several experimental schemes are designed, fluid physical properties, interlayer distribution, and development mode according to the actual reservoir physical properties. Through the visualization of experimental equipment, the bottom water reservoir is visually stimulated. The displacement and sweep law of natural water drive and artificial water injection in bottom water reservoir with or without an interlayer, different viscosity, and different well spacing is analyzed. The following conclusions are obtained: (1) For reservoirs with a viscosity of 150 cp. The recovery factor after water injection is slightly higher than before water injection. However, the recovery factor is lower than that without injection production. The reason is that the increment of injection conversion is limited to reduce one production well after injection conversion. (2) For reservoirs with a viscosity of 30 cp. The recovery factor after injection is 39.8%, which is slightly higher than 38.9% without injection. (3) For reservoirs with a viscosity of 150 cp. In the case of the interlayer. The recovery factor after injection is 30.7%, which is significantly higher than 24.8% without injection. (4) After the well spacing of the low-viscosity reservoir is reduced, the recovery factor reaches 46.1%, which is higher than 38.9% of the non-infill scheme. After the infill well in a low-viscosity reservoir is transferred to injection, the recovery factor is 45.6%, which has little change compared with non-injection, and most of the cumulative production fluid is water. The feasibility and effect of water flooding in a strong bottom water reservoir are demonstrated. This study provides the basis for the proposal of production well injection conversion and the adjustment of production parameters in the highest water cut stage of a big bottom water reservoir.


2012 ◽  
Vol 616-618 ◽  
pp. 985-991
Author(s):  
Liang Zhang ◽  
Shang Ming Shi ◽  
Chang Hui Yan ◽  
Ning Gan

Tahe oilfield of Triassic oil under low amplitude anticline group monolithic sandstone reservoirs with bottom water features, having a uniform oil-water interface, water energy sufficient. The current production wells generally see water, water cut rising too fast. Horizontal well bottom water coning phenomenon is outstanding, later period of high water cut stage manages difficulty to increase, water blocking measures have a low efficiency. Determine critical output, to improve production well life, efficient development reservoir has important significance .Based on the study of dynamic characteristics of single well and geological analysis of factors determining the critical output, and the application of numerical simulation method to verify the reasonable threshold quantity production. This method is simple and practical, can accurately make the critical output of single well.


2014 ◽  
Vol 522-524 ◽  
pp. 1346-1350
Author(s):  
Jian Huai Wang ◽  
Wei Nan Zhang

Taking M reservoir of D field as an example, analyzing the development feature of a thick sandstone reservoir in the high water cut stage which is driven by natural water, and studying the distribution law of remaining oil for this reservoir through 3 aspects: sweeping of the edge-bottom water, completeness of the well pattern and barrier of the partial interbed, and expounding the development method and effect of this thick sand reservoir in the high water cut stage through exploiting 3 kinds of remaining oil rich regions as fellows: the region which is not swept by the edge-bottom water; incomplete region of the well pattern and barrier region of the partial interbed.


1998 ◽  
Author(s):  
Jianhua Qin ◽  
Ruiqi Yang ◽  
Jianping Chi ◽  
Shouyun Cheng ◽  
Canxing Dai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document