The Numerical Simulation of Gas-Pulverized Coal Two Phase Flow after Coal and Gas Outburst

2012 ◽  
Vol 524-527 ◽  
pp. 776-780 ◽  
Author(s):  
Bai Sheng Nie ◽  
Xiang Chun Li ◽  
Wen Bo Liu ◽  
Yang Wang ◽  
Xiao Yan Wang ◽  
...  

The gas-pulverized coal two phase flow law of gas is simulated by the use of the theory of jet after coal and gas outburst. Research results show that as the volume fraction of pulverized coal in outbursts mixture increases, the speed of two phase flow at the exit gradually reduces, jet core length shorter, turbulent longitudinal effect range smaller, jet width narrower. And dynamic head mainly concentrates in the jet core area and its distribution is more uniform in the roadways. The maximum speed of outburst two-phase flow decreases with the adding volume fraction of pulverized coal, that is higher the coal content in outburst mixtures, smaller the maximum speed after outburst. But a high content of coal have higher impact strike force which can cause major damage effect. The research may provide some theoretical basis for setting underground safety facilities, mine personal protection, disaster warning and emergency rescue.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xusheng Zhao ◽  
Jie Cao ◽  
Bo Wang ◽  
Xuelin Yang

Coal and gas outburst is still a major safety problem in the process of coal production in China. Correctly understanding of the migration law of outburst high gas and pulverized coal is an important basis for accurately predicting the occurrence time and possible scope of outburst. To reveal the airflow disturbance characteristics and coal-gas flow rule in coal and gas outburst process, outburst coal-gas migration simulations under different gas pressures were conducted using a self-developed visual outburst dynamic effect test device. The results showed that coal-gas flow state at the outburst port is divided into subcritical flow, critical flow, and supercritical flow state. The pulverized coal-gas flow migration in the roadway space can be divided into coal gas two-phase flow area, air compression area, and undisturbed area. Under the experimental conditions, the maximum propagation velocities of wave are 342.22~359.21 m/s, and the coal gas two-phase flow is far less than the propagation velocities of outburst wave, just 3.68~33.33 m/s. When the outburst energy is large, multiple compression waves can superimpose to form shock waves. The peak value of the wave does not necessarily appear in the first boosting range. The presence of pulverized coal leads to a faster attenuation of shock wave, but it makes a greater dynamic destructive force at the same speed.


2021 ◽  
pp. 014459872110238
Author(s):  
Feng Du ◽  
Yangyang Guo ◽  
Liang Wang ◽  
Chao Xu ◽  
Aitao Zhou ◽  
...  

In the process of coal-gas outburst, the gas-solid two-phase flow of pulverized coal and gas will induce large-scale damage to underground mining. In this work, in order to study the dynamic evolution law of gas-solid two-phase flow of coal-gas outburst, and clarify the short-time destructive effect of outburst dynamic phenomenon, an EDEM-FLUENT coupled model is constructed to realize the numerical simulation of coal-gas outburst two-phase flow. The simulation results show that the flow velocity of pulverized coal in a short time (tens of milliseconds) approaches to the maximum velocity rapidly, which can reach 60 m/s. The velocity of pulverized coal is inversely proportional to the particle size. The initial acceleration of particles is slow, and then the acceleration increases rapidly. The accumulation angle of pulverized coal in the outburst hole is about 21° and is far less than the natural accumulation angle of pulverized coal, which is consistent with the general phenomenon of coal-gas outbursts. The results also show that the shock wave overpressure of the coal-gas outburst of numerical simulation is similar to that of the physical simulation test, and the difference is less than 10%. And the pressure change in the roadway is completed in short time. In terms of spatial relationships, the pressure at the position closest to the outburst mouth is not the maximum, and the maximum pressure exists at a certain position away from the outburst mouth.


Author(s):  
Marco Pellegrini ◽  
Giulia Agostinelli ◽  
Hidetoshi Okada ◽  
Masanori Naitoh

Steam condensation is characterized by a relatively large interfacial region between gas and liquid which, in computational fluid dynamic (CFD) analyses, allows the creation of a discretized domain whose average cell size is larger than the interface itself. For this reason generally one fluid model with interface tracking (e.g. volume of fluid method, VOF) is employed for its solution in CFD, since the solution of the interface requires a reasonable amount of cells, reducing the modeling efforts. However, for some particular condensation applications, requiring the computation of long transients or the steam ejected through a large number of holes, one-fluid model becomes computationally too expensive for providing engineering information, and a two-fluid model (i.e. Eulerian two-phase flow) is preferable. Eulerian two-phase flow requires the introduction of closure terms representing the interactions between the two fluids in particular, in the condensation case, drag and heat transfer. Both terms involve the description of the interaction area whose definition is different from the typical one adopted in the boiling analyses. In the present work a simple but effective formulation for the interaction area is given based on the volume fraction gradient and then applied to a validation test case of steam bubbling in various subcooling conditions. It has been shown that this method gives realistic values of bubble detachment time, bubble penetration for the cases of interest in the nuclear application and in the particular application to the Fukushima Daiichi accident.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
T. Salameh ◽  
Y. Zurigat ◽  
A. Badran ◽  
C. Ghenai ◽  
M. El Haj Assad ◽  
...  

This paper presents three-dimensional numerical simulation results of the effect of surface tension on two-phase flow over unglazed collector covered with a wire screen. The homogenous model is used to simulate the flow with and without the effect of porous material of wire screen and surface tension. The Eulerian-Eulerian multiphase flow approach was used in this study. The phases are completely stratified, the interphase is well defined (free surface flow), and interphase transfer rate is very large. The liquid–solid interface, gas–liquid interface, and the volume fraction for both phases were considered as boundaries for this model. The results show that the use of porous material of wire screen will reduce the velocity of water flow and help the water flow to distribute evenly over unglazed plate collector. The possibility of forming any hot spot region on the surface was reduced. The water velocity with the effect of surface tension was found higher than the one without this effect, due to the extra momentum source added by surface tension in longitudinal direction. The use of porous material of wires assures an evenly distribution flow velocity over the inclined plate, therefore helps a net enhancement of heat transfer mechanism for unglazed solar water collector application.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yunfeng Dai ◽  
Zhifang Zhou ◽  
Jin Lin ◽  
Jiangbo Han

To describe accurately the flow characteristic of fracture scale displacements of immiscible fluids, an incompressible two-phase (crude oil and water) flow model incorporating interfacial forces and nonzero contact angles is developed. The roughness of the two-dimensional synthetic rough-walled fractures is controlled with different fractal dimension parameters. Described by the Navier–Stokes equations, the moving interface between crude oil and water is tracked using level set method. The method accounts for differences in densities and viscosities of crude oil and water and includes the effect of interfacial force. The wettability of the rough fracture wall is taken into account by defining the contact angle and slip length. The curve of the invasion pressure-water volume fraction is generated by modeling two-phase flow during a sudden drainage. The volume fraction of water restricted in the rough-walled fracture is calculated by integrating the water volume and dividing by the total cavity volume of the fracture while the two-phase flow is quasistatic. The effect of invasion pressure of crude oil, roughness of fracture wall, and wettability of the wall on two-phase flow in rough-walled fracture is evaluated.


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042094088
Author(s):  
Yi Ma ◽  
Minjia Zhang ◽  
Huashuai Luo

A numerical and experimental study was carried out to investigate the two-phase flow fields of the typical three valves used in the multiphase pumps. Under the gas volume fraction conditions in the range of 0%–100%, the three-dimensional steady and dynamic two-phase flow characteristics, pressure drops, and their multipliers of the ball valve, cone valve, and disk valve were studied, respectively, using Eulerian–Eulerian approach and dynamic grid technique in ANSYS FLUENT. In addition, a valve test system was built to verify the simulated results by the particle image velocimetry and pressure test. The flow coefficient CQ (about 0.989) of the disk valve is greater than those of the other valves (about 0.864) under the steady flow with a high Reynolds number. The two-phase pressure drops of the three valves fluctuate in different forms with the vibration of the cores during the dynamic opening. The two-phase multipliers of the fully opened ball valve are consistent with the predicted values of the Morris model, while those of the cone valve and disk valve had the smallest differences with the predicted values of the Chisholm model. Through the comprehensive analysis of the flow performance, pressure drop, and dynamic stability of the three pump valves, the disk valve is found to be more suitable for the multiphase pumps due to its smaller axial space, resistance loss, and better flow capacity.


2018 ◽  
Vol 18 (16) ◽  
pp. 6822-6835 ◽  
Author(s):  
Francisco R. Moreira da Mota ◽  
Daniel J. Pagano ◽  
Marina Enricone Stasiak

Author(s):  
Itaru MICHIYOSHI ◽  
Akimi SERIZAWA ◽  
Shinji MITANI

Sign in / Sign up

Export Citation Format

Share Document