THE FEASIBILITY OF KAOLIN AS MAIN MATERIAL FOR LOW COST POROUS CERAMIC HOLLOW FIBRE MEMBRANE PREPARED USING COMBINED PHASE INVERSION AND SINTERING TECHNIQUE

2017 ◽  
Vol 79 (1-2) ◽  
Author(s):  
Siti Khadijah Hubadillah ◽  
Mohd Hafiz Dzarfan Othman ◽  
A. F. Ismail ◽  
Mukhlis A. Rahman ◽  
Juhana Jaafar

Ceramic hollow fibre membrane (CHFM) demonstrated superior characteristics and performance in any separation application. The only problem associated with this kind of technology is the high cost. In order to effectively fabricate and produce low cost porous CHFM, a series of CHFMs made of kaolin were fabricated via combined phase inversion and sintering technique. The CHFMs from kaolin named as kaolin hollow fibre membranes (KHFMs) were studied at different kaolin contents of 35 wt.%, 37.5 wt.% and 40 wt.% sintered at 1200ºC. The result indicated that by varying kaolin contents, different morphologies were obtained due to changes in the viscosity of ceramic suspension containing kaolin. The optimum kaolin content for KHFM was identified. It was found that KHFM prepared at 37.5 wt% has a mechanical strength and pure water flux of A and B respectively.  

2011 ◽  
Vol 391-392 ◽  
pp. 1412-1416 ◽  
Author(s):  
Yu Xin Ma ◽  
Feng Mei Shi ◽  
Miao Nan Wu ◽  
Jun Ma

Porous asymmetric PVDF membranes were prepared by the phase inversion process induced by a nonsolvent. The effect of pore-forming hydrophilic additives on the membrane morphology and transport properties was investigated. It was found that membranes prepared with hydrophilic polymer additives can offer higher pure water flux, higher porosity and lower pepsin rejection. PEG 10 000 can be used as a good pore forming additive to prepare PVDF membrane with higher pure water flux and relatively high pepsin rejection.


2016 ◽  
Vol 15 (2) ◽  
pp. 1
Author(s):  
Syafikah H Paiman ◽  
Mukhlis A A Rahman ◽  
Mohd Hafiz Dzarfan Othman ◽  
Siti Halimah Ahmad

Recently, ceramic membrane gradually acquired attention from researchers due to the advantages of ceramic’s behavior, which allows the ceramic to overcome the limitations of using polymeric membrane. This work focused on the fabrication of ceramic hollow fibre membrane from a ceramic suspension solution containing yttria-stabilized zirconia (YSZ), polyethersulfone (PESf), N-methylpyrrolidone (NMP) and dispersants using combined phase inversion sintering technique. In this study, ceramic hollow membrane precursors were sintered at different sintering temperature ranging between 1250°C and 1400°C. The influences of sintering temperature on the microstructure, porosity and pore size distribution, mechanical strength and pure water flux of ceramic hollow fibre membrane were investigated in detail. The results show an asymmetric structure of YSZ hollow fibre membrane containing finger-like structure and sponge-like structure. The sponge-like structure can serve as a separation layer, while finger-like-structure performs as a supported layer. It is observed that sintering process caused a significant densification of sponge-like structure (microstructure). Sintering at temperature 1400°C shows the formation of non- interconnected voids. Sintering at 1300°C is sufficient enough having a mechanical strength of 227.55MPa with an apparent porosity of 45.09% and PWF of 118.39L.m¯².hr¯¹.


2017 ◽  
Vol 79 (1-2) ◽  
Author(s):  
Nur Hamizah Mohtor ◽  
Mohd Hafiz Dzarfan Othman ◽  
A. F. Ismail ◽  
Mukhlis A. Rahman ◽  
Juhana Jaafar ◽  
...  

Ceramic membrane has the ability to surpass the utilisation of polymeric membrane in the application that requiring high temperature and pressure condition, as well as harsh chemical environment. Due to the high cost of ceramic membrane, various attempts have been made to use low cost ceramic materials as alternatives to well-known expensive metal oxides. In this work, local Malaysian kaolin has been chosen as ceramic material since it is inexpensive and easily available in Malaysia for the preparation of low cost hollow fibre ceramic membrane. The aim of this work is to study the effect of sintering temperature on the morphology, properties, and performance of kaolin hollow fibre membrane by sintering the prepared precursor at different target temperatures ranging from 1300°C to 1500 °C. The experimental results demonstrated that the kaolin membrane sintered at 1400 °C has influenced the formation of sufficient dense sponge-like structure of skin layer, resulting in good water flux of 74 L/h.m2.


2012 ◽  
Vol 152-154 ◽  
pp. 574-578 ◽  
Author(s):  
Ping Lan ◽  
Wei Wang

Polyethersulfone (PES) hollow fiber membranes have been widely used in many fields, such as ultrafiltration, microfiltration, reverse osmosis, liquid/liquid or liquid/solid separation, gas separation, hemodialysis, and so on. In this paper, the sheet PES hollow fiber membranes were prepared. The morphology and performance of membranes can be controlled. By studying the influence of the compositions and conditions on the morphology and performance of PES hollow fiber membrane, the relationship of morphology and performance of the membrane is acquired. The additives were used such as glycerol, BuOH and PEG. In addition, immerse phase inversion was used as membranes preparation method. The morphology of the membrane was controlled by changing kinds of additive, concentration of additive and so on. It was found that the membrane morphologies were changed by additive obviously. Porosity , pure water flux, scanning electron microscopy(SEM) were used to characterize the morphology and performance of the membranes.


2018 ◽  
Vol 19 (4) ◽  
pp. 1279-1285
Author(s):  
Q. Y. Zhang ◽  
Q. An ◽  
Y. G. Guo ◽  
J. Zhang ◽  
K. Y. Zhao

Abstract To enhance the anti-fouling and separating properties of polyvinylidene fluoride (PVDF) membranes, an amphiphilic copolymer of methyl methacrylate and 2-acrylamido-2-methylpropane sulfonic acid, poly(MMA-co-AMPS), was designed and synthesized. Through a phase-inversion process, the poly(MMA-co-AMPS) were fully dispersed in the PVDF membrane. The properties of membrane including the surface and cross-section morphology, surface wettability and fouling resistance under different pH solutions were investigated. Compared to the unmodified PVDF membranes, the contact angles of modified PVDF membranes decreased from 80.6° to 71.6°, and the pure water flux increased from 54 to 71 L·m−2·h−1. In addition, the hybrid PVDF membrane containing 0.5 wt% copolymers demonstrated an larger permeability, better fouling resistance and higher recovery ratio via pure water backlashing, when it was compared with the other blend membranes, and the virgin one in the cyclic test of anti-fouling. The modified membranes with the copolymers possessed an outstanding performance and may be used for further water treatment applications.


2013 ◽  
Vol 457-458 ◽  
pp. 309-312 ◽  
Author(s):  
Yang Bai ◽  
Zhen Liu ◽  
Dao Bao Sun

Polysulfone (PSF) hollow fiber ultrafiltration membranes were successfully prepared by dry-wet spinning technology. Dimethylacetamide (DMAC) was used as a solvent, water was used as bore liquid and coagulation bath, polyvinylpyrrolidone (PVP) was used as polymeric additive. The effects of spinning conditions on membrane structures and properties were investigated in present study. The results indicated that with the increase of PVP concentration, pure water flux increased and developed finger-like pores were formed. High coagulation bath temperature restricted pure water flux, 30°C was the best for the preparation of high-performance ultrafiltration membranes. When the air length was 11cm, the membrane comprehensive performance was the best.


2013 ◽  
Vol 750-752 ◽  
pp. 1941-1944
Author(s):  
Jiao Jiao Dong ◽  
Yu Feng Zhang ◽  
Dong Qing Liu

In this article, a series of the PVDF/PPTA blend membranes with porous structure and excellent performance were successfully prepared by the phase transformation method. The effect of the mass ratio of W(PVDF)/W(PPTA) was systematically investigated.The morphology of the blend membranes were examined using scanning electron microscope (SEM). The permeation performance was characterized by measuring pure water flux. Meanwhile, the mechanical properties of membranes were researched. The experiment results confirmed that the blending ratio is a major factor to influence the structure and performance of PVDF/PPTA blend membrane. The blend membranes possess much better permeability than pure PVDF membrane and fairly good the mechanical properties especially for the membrane made by PVDF : PPTA=6 : 1.


2012 ◽  
Vol 528 ◽  
pp. 210-213 ◽  
Author(s):  
Xuan Wang ◽  
Hao Long Bai ◽  
Li Ping Zhang

Nanocrystalline cellulose was used to blend with polysulfone to improve the hydrophicility and mechanical properties of PS hollow fiber ultrafiltration membrane. The method of dry-jet/wet-spining was adopted to form the hollow fiber by the mechanism of phase-inversion. In addition, the content of NCC was increased gradually from 0% to 1 wt% to examin the permeation flux, rejection ratio of bovine serum albumin(BSA) and mechanical strength of PS hollow-fiber. We find that the pure water flux was soared when NCC content was increased. The tensile strength and elongation at break were also detected and calculated. The results indicated that the properties of PS hollow-fiber membrane with appropriate NCC content were enhanced. The hollow fiber membranes were also observed with scaning electron microscopy(SEM) to explore the porous structure


Sign in / Sign up

Export Citation Format

Share Document