scholarly journals Synthesis, characterization and filtration performance of the polyvinylidene fluoride membrane modified by poly(methyl ethacrylate-co-2-acrylamido-2-methylpropane sulfonic acid)

2018 ◽  
Vol 19 (4) ◽  
pp. 1279-1285
Author(s):  
Q. Y. Zhang ◽  
Q. An ◽  
Y. G. Guo ◽  
J. Zhang ◽  
K. Y. Zhao

Abstract To enhance the anti-fouling and separating properties of polyvinylidene fluoride (PVDF) membranes, an amphiphilic copolymer of methyl methacrylate and 2-acrylamido-2-methylpropane sulfonic acid, poly(MMA-co-AMPS), was designed and synthesized. Through a phase-inversion process, the poly(MMA-co-AMPS) were fully dispersed in the PVDF membrane. The properties of membrane including the surface and cross-section morphology, surface wettability and fouling resistance under different pH solutions were investigated. Compared to the unmodified PVDF membranes, the contact angles of modified PVDF membranes decreased from 80.6° to 71.6°, and the pure water flux increased from 54 to 71 L·m−2·h−1. In addition, the hybrid PVDF membrane containing 0.5 wt% copolymers demonstrated an larger permeability, better fouling resistance and higher recovery ratio via pure water backlashing, when it was compared with the other blend membranes, and the virgin one in the cyclic test of anti-fouling. The modified membranes with the copolymers possessed an outstanding performance and may be used for further water treatment applications.

2011 ◽  
Vol 391-392 ◽  
pp. 1412-1416 ◽  
Author(s):  
Yu Xin Ma ◽  
Feng Mei Shi ◽  
Miao Nan Wu ◽  
Jun Ma

Porous asymmetric PVDF membranes were prepared by the phase inversion process induced by a nonsolvent. The effect of pore-forming hydrophilic additives on the membrane morphology and transport properties was investigated. It was found that membranes prepared with hydrophilic polymer additives can offer higher pure water flux, higher porosity and lower pepsin rejection. PEG 10 000 can be used as a good pore forming additive to prepare PVDF membrane with higher pure water flux and relatively high pepsin rejection.


2011 ◽  
Vol 295-297 ◽  
pp. 286-291
Author(s):  
Li Guo Wang ◽  
Xiao Guang Zhang ◽  
Shu Fang Hou ◽  
Xiu Ju Wang ◽  
Ai Min Wang ◽  
...  

Hydrophilic polyvinylidene fluoride (PVDF) flat ultrafiltration membranes were prepared by wet-spinning method. The effects of technical parameters of maleic anhydride grafted onto PVDF on the performance of hydrophilic PVDF membranes were investigated, the preparation technical parameters were determined, and the hydrophilic PVDF flat membranes were prepared. Then, hydrophilic PVDF membranes were characterized in terms of pure water flux, contact angle, infrared spectroscopic analysis and scanning electron microscope(SEM). The results showed that maleic anhydride had been grafted onto PVDF, and the hydrophilic performance of the modified membrane was better than the traditional one.


2021 ◽  
pp. 1-8
Author(s):  
Jiale Qu ◽  
Shen Gao ◽  
Zhenghao Hou

Polyvinylidene fluoride (PVDF) is a promising membrane material in ultrafiltration (UF) applications; its extensive application however is limited due to the disadvantage in hydrophilicity and low surface energy. Herein, a sort of TPU-modified PVDF membrane is prepared by blending method and its hydrophilicity is compared with a series of pure/modified PVDF membranes. The contact angle and pure water flux (PWF) results demonstrate that the hydrophilicity of the TPU-modified PVDF membrane is enhanced, and the performance is not inferior to that of traditional pore-modified PVDF membranes. SEM image shows that the TPU-modified PVDF membrane maintains morphology of the pure PVDF membrane, indicating that TPU molecules have excellent compatibility with PVDF molecules and can maintain the mechanical property of PVDF membrane to a certain extent. Finally, we explore the effects of TPU molecules and PVDF molecules on water molecules, respectively, from a microscopic perspective involving first principles. This investigation not only establishes that PVDF membrane has been prepared with enhanced hydrophilicity, but also provides a novel avenue for the modification of membrane properties.


2011 ◽  
Vol 306-307 ◽  
pp. 1563-1568 ◽  
Author(s):  
Li Guo Wang ◽  
Xiao Guang Zhang ◽  
Shu Fang Hou ◽  
Xiu Ju Wang ◽  
Ai Min Wang ◽  
...  

Hydrophilic polyvinylidene fluoride (PVDF) flat ultrafiltration membranes were prepared by wet-spinning method. The effects of technical parameters of acrylic acid grafted onto PVDF on the performance of hydrophilic PVDF membranes were investigated, the technical parameters of preparation of hydrophilic PVDF membranes were determined, and hydrophilic PVDF flat membranes were prepared. Then, hydrophilic PVDF membranes were characterized in terms of pure water flux, contact angle, infrared spectroscopic analysis and scanning electron microscope (SEM). The results showed that acrylic acid had been grafted onto PVDF, and the hydrophilic performance of the modified membrane was better than the traditional one.


2015 ◽  
Vol 1096 ◽  
pp. 446-449
Author(s):  
Fang Hu ◽  
Jun Fen Sun

Polyvinylidene fluoride (PVDF)/PEG-POSS hybrid membrane was prepared by immersion phase separation process. The hybrid membranes were characterized by pure water flux, retention ratio to BSA, contact angle, shrinkage ratio and scanning electron microscopy (SEM). The hydrophilicity of the membrane was improved. The contact angles decreases from 82.2°to 76.3°. The shrinkage ratio decreases and the pure water flux increased when 1.0% POSS was used.Keywords: polyvinylidene fluoride (PVDF); PEG-POSS; hybrid membrane; hydrophilicity


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 113
Author(s):  
Erika Nascimben Santos ◽  
Ákos Fazekas ◽  
Cecilia Hodúr ◽  
Zsuzsanna László ◽  
Sándor Beszédes ◽  
...  

Non-solvent induced phase-inversion is one of the most used methods to fabricate membranes. However, there are only a few studies supported by statistical analysis on how the different fabrication conditions affect the formation and performance of membranes. In this paper, a central composite design was employed to analyze how different fabrication conditions affect the pure water flux, pore size, and photocatalytic activity of polyvinylidene fluoride (PVDF) membranes. Polyvinylpyrrolidone (PVP) was used to form pores, and titanium dioxide (TiO2) to ensure the photocatalytic activity of the membranes. The studied bath temperatures (15 to 25 °C) and evaporation times (0 to 60 s) did not significantly affect the pore size and pure water flux of the membranes. The concentration of PVDF (12.5 to 17.5%) affected the viscosity, formation capability, and pore sizes. PVDF at high concentrations resulted in membranes with small pore sizes. PVP affected the pore size and should be used to a limited extent to avoid possible hole formation. TiO2 contents were responsible for the decolorization of a methyl orange solution (10−5 M) up to 90% over the period studied (30 h). A higher content of TiO2 did not increase the decolorization rate. Acidic conditions increased the photocatalytic activity of the TiO2-membranes.


2020 ◽  
Vol 17 (2) ◽  
pp. 1499-1502
Author(s):  
J. Hamdan ◽  
H. Hasbullah ◽  
M. N. M. Sokri ◽  
N. S. M. Sabri ◽  
M. A. F. Suran ◽  
...  

Polyvinylidene Fluoride (PVDF) has been used as a membrane’s base material for wastewater treatment for quite some time. Due to PVDF hydrophobic nature, fouling will occur, thus, reducing the membrane performance. The main objective of this study was to investigate the effect of various chitosan loadings on membrane hydrophilicity and overall liquid separation performance. The loadings of chitosan (wt.%) used were neat PVDF, 0.25%, 0.5%, 0.75% and 1% in PVDF mixed matrix membrane. It was found that 0.75% chitosan membrane had the lowest contact angle of 63° making it the most hydrophilic. The pure water flux test on the membranes also showed the same trend where the lowest contact angle resulting in the highest pure water flux. The PVDF membrane containing 0.75% chitosan possessed the highest pure water flux of 43.5 Lm−2h−1. With the rejection of dye of over 43.12%. The study proved that adding chitosan into PVDF membrane certainly improved the membrane hydrophilicity and the percentage removal of methylene blue dye.


2011 ◽  
Vol 480-481 ◽  
pp. 691-696 ◽  
Author(s):  
Li Guo Wang ◽  
Xiao Guang Zhang ◽  
Shi Qi Guo ◽  
Ai Min Wang ◽  
Xiu Ju Wang ◽  
...  

Hydrophilic Polyvinylidene fluoride (PVDF) flat ultrafiltration membranes were prepared by wet-spinning method. The influence of blending ratio ( the mass ratio of PVDF and PAA), polymer concentration on preparation of blending modified hydrophilic PVDF ultrafiltration membranes were investigated, the technical parameters of preparation of hydrophilic PVDF membranes were determined, and hydrophilic PVDF membranes were prepared. Then, hydrophilic PVDF membranes were characterized in terms of IR spectra, contact angle, scanning electron microscopy images, pure water flux and rejection. The results showed that hydrophilic ultrafiltration membrane could be prepared with PAA and PVDF blends, the hydrophilicity improved greatly, and it was better than traditional PVDF membrane.


2011 ◽  
Vol 480-481 ◽  
pp. 201-206
Author(s):  
Li Guo Wang ◽  
Xiu Ju Wang ◽  
Ai Min Wang ◽  
Wen Juan Liu ◽  
Shi Qi Guo ◽  
...  

Hydrophilic Polyvinylidene fluoride (PVDF) hollow fiber ultrafiltration membranes were prepared by wet-spinning method. The effects of technical parameters of acrylic acid grafted onto PVDF on the performance of hydrophilic PVDF membranes were investigated via orthogonal test, the technical parameters of preparation of hydrophilic PVDF membranes were determined, and hydrophilic PVDF membranes were prepared. Then hydrophilic PVDF membranes were characterized in terms of breaking strength, breaking elongation, rupture pressure, pure water flux and rejection. The fouling properties and the conditions of acrylic acid grafted onto PVDF were also examined. The results showed that acrylic acid had been grafted onto PVDF, the breaking strength and rupture pressure improved greatly, and the fouling properties were better than PS hollow fiber UF membrane.


2017 ◽  
Vol 79 (1-2) ◽  
Author(s):  
Siti Khadijah Hubadillah ◽  
Mohd Hafiz Dzarfan Othman ◽  
A. F. Ismail ◽  
Mukhlis A. Rahman ◽  
Juhana Jaafar

Ceramic hollow fibre membrane (CHFM) demonstrated superior characteristics and performance in any separation application. The only problem associated with this kind of technology is the high cost. In order to effectively fabricate and produce low cost porous CHFM, a series of CHFMs made of kaolin were fabricated via combined phase inversion and sintering technique. The CHFMs from kaolin named as kaolin hollow fibre membranes (KHFMs) were studied at different kaolin contents of 35 wt.%, 37.5 wt.% and 40 wt.% sintered at 1200ºC. The result indicated that by varying kaolin contents, different morphologies were obtained due to changes in the viscosity of ceramic suspension containing kaolin. The optimum kaolin content for KHFM was identified. It was found that KHFM prepared at 37.5 wt% has a mechanical strength and pure water flux of A and B respectively.  


Sign in / Sign up

Export Citation Format

Share Document