Kinematics Simulation of Parallel Mechanism Based on ADAMS

2012 ◽  
Vol 538-541 ◽  
pp. 479-482
Author(s):  
Xin Yu Du ◽  
Hong Wei Liu

In this paper,a kind of 3-UPU spatial parallel mechanism is introduced. Through deep analysis of the degree-of-freedom (DoF) for the platform using screw theory, the position and orientation of the moving platform is discussed. At last, the 3D virtual prototype modeling of this 3-UPU parallel mechanism based on software ADAMS is developed; the kinematics simulation and analysis are also carried out accordingly. From the simulation results, we can see that the proposed calculation of the DoFs and kinematics analysis is correct.

2019 ◽  
Vol 27 (2) ◽  
pp. 10-20
Author(s):  
Hassan Mohammed Alwan ◽  
Riyadh Ahmed Sarhan

The Gough Stewart Robotic manipulator is a parallel manipulator with six-degree of freedom, which has six equations of Kinematics (Inverse and forward), with six variables (Lengths, Position, and Orientation). In this work derived the inverse equations, which used to compute the lengths of the linkages and its changes depended on the position and orientation of the platform's center, then derived the forward equations to calculate the position and orientation of the moving platform in terms of the lengths. This theoretical model of the kinematics analysis of the Gough Stewart has been built into the Simulink package in Matlab to obtain the lengths, position, and orientation for the manipulator at any time of motion. The input parameters (Position and Orientation) in inverse blocks compared with the output parameters (Position and Orientation) in the forward blocks, which show good results.


2014 ◽  
Vol 568-570 ◽  
pp. 904-910
Author(s):  
Yan Bin Zhang ◽  
Hui Ping Wang

A novel 3-dof planar parallel mechanism, which is composed by three different limbs, is designed. The moving platform can translate along two directions and rotate around one axis with respect to the base. Mobility of the mechanism is discussed and calculated based on the screw theory. The forward and the inverse analytical position equations are derived and the veloctiy analysis is addressed too. The Jacobian matrix is an identical one, so there exists one-to-one corresponding linear controlling relationship between one of the actuated joints and one of the outputs of the platform. Moreover, the condition number of the Jacobian matrix is constantly equal to one and the mechanism shows fully-isotropic throughout entire workspace.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yong Xu ◽  
Zheng Liang ◽  
Jiali Liu

This paper proposes the concept of full configuration state of metamorphic mechanism. Based on the concept, the configuration synthesis principle of metamorphic parallel mechanism is put forward. Firstly, a metamorphic parallel mechanism in full configuration state is synthesized, and then full configuration state evolves into a specific configuration state by increasing constraints or decreasing degrees of freedom. A reconfigurable moving platform based on the triple symmetric Bricard spatial closed-loop mechanism with a single degree of freedom is proposed. Based on this, a new method for switching motion configuration states of the metamorphic parallel mechanism is constructed. According to the configuration synthesis principle presented above, a novel metamorphic parallel mechanism that can switch between three- and four-degree-of-freedom is synthesized, and then the triple symmetric Bricard spatial closed-loop mechanism is used as the reconfigurable moving platform (that is, the reconfigurable foot of a walking robot) of the metamorphic mechanism, and thus, a novel metamorphic parallel leg mechanism is created. The screw theory is used to verify the degrees of freedom of the new type of metamorphic parallel leg. The proposed metamorphic parallel leg mechanism is expected to improve flexibility and adaptability of walking robots in unstructured environment.


Author(s):  
Sheng Guo ◽  
Congzhe Wang ◽  
Haibo Qu ◽  
Yuefa Fang

In this article, a novel 4-RRCR parallel mechanism is introduced based on screw theory, and its kinematics and singularity are studied systematically. First, the degree of freedom analysis is performed using the screw theory. The formulas for solving the inverse and direct kinematics are derived. Second, a recursive elimination method is proposed to solve the Jacobian matrix based on the algebra operation of reciprocal product. Then, three kinds of singularity, i.e. limb, platform, and actuation singularities are analyzed. Finally, the analysis proves that the proposed mechanism possesses two advantages of simple forward kinematics and no platform singularity.


2011 ◽  
Vol 317-319 ◽  
pp. 469-474
Author(s):  
Shi Hua Li ◽  
Zhi Song Wang ◽  
Chang Cheng Yu ◽  
Wen Gong

Abstract. In this paper, a novel type of 2-UPU/2-URU asymmetric parallel mechanism is put forward, the degree of freedom and kinematics characteristics of the mechanism is analyzed. Firstly, based on screw theory, the degree of freedom of the mechanism is analyzed by using modified Grübler-Kutzbach formula of Degree of Freedom, the method is ingenious and simple. Then the kinematics analysis is done. Finally, the velocity and acceleration of the mechanism is analyzed by combining kinematic influence coefficient theory with imaginary mechanism method, and draw the velocity and acceleration performance curve of the mechanism with the MATLAB. This paper lays the foundation for further research of the parallel mechanism.


Robotica ◽  
2014 ◽  
Vol 34 (4) ◽  
pp. 764-776 ◽  
Author(s):  
Sheng Guo ◽  
Wei Ye ◽  
Haibo Qu ◽  
Dan Zhang ◽  
Yuefa Fang

SUMMARYIn this paper, a class of novel four Degrees of Freedom (DOF) non-overconstrained parallel mechanisms with large rotational workspace is presented based on screw theory. First, the conflict between the number of independent constraints applied on the moving platform and the number of kinematic limbs for 4-DOF non-overconstrained parallel mechanism is identified. To solve this conflict, the platform partition method is introduced, and two secondary platforms are employed in each of the parallel mechanisms. Then, the motion requirements of the secondary platforms are analyzed and all the possible kinematic chains are enumerated. The geometrical assembly conditions of all possible secondary limbs are analyzed and some typical non-overconstrained parallel mechanisms are generated. In each of the parallel mechanisms, a planetary gear train is used to connect both of the secondary platforms. The large rotational workspace of the moving platform is obtained due to the relative motion of the two secondary platforms. Finally, the kinematics analysis of a typical parallel mechanism is conducted.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Daniel Prusak ◽  
Konrad Kobus ◽  
Grzegorz Karpiel

A study of the inverse kinematics for a five-degree-of-freedom (DOF) spatial parallel micromanipulator is presented here below. The objective of this paper is the introduction of a structural and geometrical model of a novel five-degree-of-freedom spatial parallel micromanipulator, analysis of the effective and useful workspace of the micromechanism, presentation of the obtained analytical solutions of the microrobot’s inverse kinematics tasks, and verification of its correctness using selected computer programs and computation environments. The mathematical model presented in this paper describes the behaviour of individual elements for the applied 2-DOF novel piezoelectric actuator, resulting from the position and orientation of the microrobot’s moving platform.


2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Yongquan Li ◽  
Yang Zhang ◽  
Lijie Zhang

Abstract The current type synthesis of the redundant actuated parallel mechanisms is adding active-actuated kinematic branches on the basis of the traditional parallel mechanisms, or using screw theory to perform multiple getting intersection and union to complete type synthesis. The number of redundant parallel mechanisms obtained by these two methods is limited. In this paper, based on Grassmann line geometry and Atlas method, a novel and effective method for type synthesis of redundant actuated parallel mechanisms (PMs) with closed-loop units is proposed. Firstly, the degree of freedom (DOF) and constraint line graph of the moving platform are determined successively, and redundant lines are added in constraint line graph to obtain the redundant constraint line graph and their equivalent line graph, and a branch constraint allocation scheme is formulated based on the allocation criteria. Secondly, a scheme is selected and redundant lines are added in the branch chains DOF graph to construct the redundant actuated branch chains with closed-loop units. Finally, the branch chains that meet the requirements of branch chains configuration criteria and F&C (degree of freedom & constraint) line graph are assembled. In this paper, two types of 2 rotational and 1 translational (2R1T) redundant actuated parallel mechanisms and one type of 2 translational and 1 rotational (2T1R) redundant actuated parallel mechanisms with few branches and closed-loop units were taken as examples, and 238, 92 and 15 new configurations were synthesized. All the mechanisms contain closed-loop units, and the mechanisms and the actuators both have good symmetry. Therefore, all the mechanisms have excellent comprehensive performance, in which the two rotational DOFs of the moving platform of 2R1T redundant actuated parallel mechanism can be independently controlled. The instantaneous analysis shows that all mechanisms are not instantaneous, which proves the feasibility and practicability of the method.


2017 ◽  
Vol 41 (5) ◽  
pp. 922-935
Author(s):  
HongJun San ◽  
JunSong Lei ◽  
JiuPeng Chen ◽  
ZhengMing Xiao ◽  
JunJie Zhao

In this paper, a 3-DOF translational parallel mechanism with parallelogram linkage was studied. According to the space vector relation between the moving platform and the fixed base, the direct and inverse position solutions of this mechanism was deduced through analytical method. In addition, the error of the algorithm was analyzed, and the algorithm had turned out to be effective and to have the satisfactory computational precision. On the above basis, the workspace of this mechanism was found through graphical method, which was compared with that of finding through Monte Carlo method, and there was the feasibility for analyzing the workspace of the mechanism by graphical method. The characteristic of the mechanism was analyzed by comparing the results of two analysis methods, which provided a theoretical basis for the application of the mechanism.


Sign in / Sign up

Export Citation Format

Share Document