Analysis of Stiffness of Viscoelastic-Friction Damper for High-Speed Rotor System

2012 ◽  
Vol 538-541 ◽  
pp. 768-772
Author(s):  
Wen Zhong Li ◽  
Fu Xiang Zhang

To reduce the excessive vibration of a high-speed rotor system as it passes its critical speed, a viscoelastic-friction damper(VEFD) are introduced into the support. Its stiffness factor is analyzed. Results show, the stiffness factor decreases with the cone angle increasing among 55-80 degrees monotonically. And it is the same trend when the stiffness of the damping material ring decreases. In the case of friction coefficient among 0.1-0.5, the stiffness factor increases monotonically. So adopted a proper structure, suitably chosen the above parameters and the axial stiffness of the outer-ring, the damper can present appropriate stiffness.

Author(s):  
James F. Walton ◽  
Michael R. Martin

Abstract Results of a program to investigate internal rotor friction destabilizing effects are presented. Internal-friction-producing joints were shown to excite the rotor system first natural frequency, when operating either below or above the first critical speed. The analytical models used to predict the subsynchronous instability were also confirmed. The axial spline joint demonstrated the most severe subsynchronous instability. The interference fit joint also caused subsynchronous vibrations at the first natural frequency but these were bounded and generally smaller than the synchronous vibrations. Comparison of data from the two test joints showed that supersynchronous vibration amplitudes at the first natural frequency were generally larger for the interference fit joint than for the axial spline joint. The effects of changes in imbalance levels and side loads were not distinguishable during testing because amplitude-limiting bumpers were required to restrict orbits.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Liao Mingfu ◽  
Song Mingbo ◽  
Wang Siji

The basic operation principle of elastic support/dry friction damper in rotor system was introduced and the unbalance response of the rotor with elastic support/dry friction damper was analyzed theoretically. Based on the previous structure using an electromagnet as actuator, an active elastic support/dry friction damper using piezoelectric ceramic actuator was designed and its effectiveness of reducing rotor vibration when rotor traverses its critical speed and blade-out event happened was experimentally verified. The experimental results show that the active elastic support/dry friction damper with piezoelectric ceramic actuator can significantly reduce vibration in rotor system; the vibration amplitude of the rotor in critical speed region decreased more than 2 times, and the active damper can protect the rotor when a blade-out event happened, so the rotor can traverse the critical speed and shut down smoothly. In addition, the structure is much simpler than the previous, the weight was reduced by half and the power consumption was only 5 W.


Author(s):  
Xiaolan Ai ◽  
Matthew Wilmer ◽  
David Lawrentz

Friction drive is a mechanical device that utilizes friction force to transmit torque and power. Since the power is transferred through shearing a thin layer of highly pressurized lubricant film formed between the mating surfaces. Friction drive possesses desired performance attributes that pertain to its unique operating principles. These attributes include high mechanical efficiency, minimal backlash, low noise and vibration and high-speed capability. The power density of a friction drive can be very high when operated at elevated speeds. These performance features, in conjunction with its inherent manufacturing simplicity, make friction drives suitable candidates for a host of applications. The current global technology trend towards electrification and increasing use of electric machines in auxiliary drives for both automotive and industrial applications presents a good opportunity for friction drives as a cost-effective alternative to conventional gear drives. The smooth high-speed performance feature of friction drives allows the use of more efficient high-speed motors to reduce motor size and thus improve system power density. A novel cylindrical friction drive was developed [1,2] for electric oil pump applications. The friction drive is to be integrated with an electric motor to provide necessary speed reduction. The friction drive, as shown in Figure 1, is comprised of an outer ring, a sun roller, a loading planet, two supporting planets and a stationary carrier. The sun roller is set eccentric to the outer ring to generate a wedge gap that facilitates a torque actuated loading mechanism for the friction drive. The loading planet is properly assembled in the wedge gap with frictional contact with the sun roller and the outer ring and is elastically supported on the carrier. By altering the ratio of the support stiffness to contact stiffness, the actual operating friction coefficient of the friction drive can be changed to suit for desired performance regardless the wedge angle. This provides a grater freedom for design optimization. Design analysis was presented and a FE model was developed to quantify design parameters. Prototypes of the friction drive were fabricated for testing. Major geometry parameters are listed in Table 1. Extensive testing was conducted to evaluate its performance. Figure 2 shows the schematic of test apparatus. It is comprised of a drive motor, a high-speed spindle, and a hydraulic brake pump. The motor drives the spindle through a rubber belt and a pair of pulleys. The spindle shaft connects to the input shaft of the friction drive thought an input torque meter. The output shaft of the friction drive couples to the hydraulic pump through an output torque meter. The torque meters pick up both speed and torque signals at input and output shafts of the friction drive, respectively. Thermo-couples are mounted to monitor temperatures at planet support shafts and at bearings of input and output shafts. An accelerometer was placed on the back plate of a mounting bracket to which the friction drive was bolted. It monitors the vibration signals of the friction drive for reference and safety purposes. A data acquisition system was used to collect and process all signals at predetermined sampling rate. The friction drive offered a consistent smooth and quite performance over a wide range of operating conditions. It was capable of operating at an elevated speed of up to 12000 rpm with adequate thermal characteristics. Figure 3 shows the steady sate temperature contour map as function of input shaft speed and output shaft torque. Results demonstrated that the friction drive has high power transmission efficiency under various test conditions. The peak efficiency exceeded 97%. Figure 4 plots the overall system efficiency as a function of output torque for various input speeds. Results also confirmed that the stiffness of the elastic support has an important impact on performance. The elastic support stiffness, in conjunction with, the contact stiffness determines the actual operating friction coefficient at the frictional contacts.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Tian Gao ◽  
Shuqian Cao ◽  
Tiancheng Zhang

This paper focuses on the fault characteristics of the bending and torsional motions of a rub-impact dual-rotor system caused by aircraft flight maneuvers. The equations of the bending-torsional coupling motion of a dual-rotor system are established considering a low-pressure rotor rub-impact fault and the transient barrel roll flight of an aircraft. The 4th Runge-Kutta method with varied steps is used to obtain the bending and torsional responses. Then, the influences of the system parameters, including the rub-impact stiffness, friction coefficient, and rotating speed, on the bending and torsional motions of the dual-rotor system are investigated in detail. At last, a rotor rubbing experiment is carried out, verifying the validity of the simulation results. The results show that the rub-impact stiffness affects bending vibration significantly and the torsional motion is sensitive to the friction coefficient. Correspondingly, the torsional responses show apparent fractional fault frequencies and rotating fault frequencies within the whole region of the rub-impact stiffness. The bending responses can only display fault frequencies at certain rub-impact stiffness. As for the rotating speed, the torsional responses are also more effective than the bending responses for the rub-impact fault detection at the low- and high-speed regions. The results will contribute to a comprehensive basis for the rub-impact fault detection.


2019 ◽  
Vol 36 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Jingjing Huang ◽  
Longxi Zheng ◽  
Chris K Mechefske ◽  
Bingbing Han

Abstract Based on rotor dynamics theory, a two-disk flexible rotor system representing an aero-engine with freely supported structure was established with commercial software ANSYS. The physical model of the two-disk rotor system was then integrated to the multidisciplinary design optimization software ISIGHT and the maximum vibration amplitudes experienced by the two disks when crossing the first critical speed were optimized using a multi-island genetic algorithm (MIGA). The optimization objective was to minimize the vibration amplitudes of the two disks when crossing the first critical speed. The position of disk 1 was selected as the optimization variable. The optimum position of disk 1 was obtained at the specified constraint that the variation of the first critical speed could not exceed the range of ±10 %. In order to validate the performance of the optimization design, the proof-of-transient experiments were conducted based on a high-speed flexible two-disk rotor system. Experimental results indicated that the maximum vibration amplitude of disk 1 when crossing the first critical speed declined by 60.9 % and the maximum vibration amplitude of disk 2 fell by 63.48 % after optimization. The optimization method found the optimum rotor positions of the flexible rotor system which resulted in minimum vibration amplitudes.


2012 ◽  
Vol 159 ◽  
pp. 355-360
Author(s):  
Ji Yan Wang ◽  
Rong Chun Guo ◽  
Xu Fei Si

The paper establishes the mechanical model of SFD-sliding bearing flexible rotor system, adopting Runge-Kutta method to solve nonlinear differential equation, thus acquiring the unbalanced response curve and then gaining the first two critical speeds of the system. Meanwhile, the paper analyzes the sensitivity of the system on the first two critical speeds towards structural parameters, offering design variables to optimization analysis. Based on sensitivity analysis, genetic algorithm is employed to give an optimization analysis on critical speed, which aims to remove critical speed from working speed as much as possible. The critical speed ameliorates after the optimization which supplies theoretical basis as well as theoretical analysis towards the dynamic stability of high-speed rotor system and provides reference for the design of such rotor system.


2013 ◽  
Vol 770 ◽  
pp. 78-83
Author(s):  
Xiu Hua Zhang ◽  
Guang Xi Li ◽  
Long Nie

This article aims at large-scale energy storage flywheel rotor system, obtaining the dynamic characteristics. Through theoretical analysis, and after doing a simulation analysis for a given flywheel rotor on the 0-20000 RPM, getting the flywheel rotor critical speed, the transient analysis and imbalance response. The system is in steady state at runtime according to the analysis results. Providing also certain theory basis for study of flywheel rotor system according to the analysis method .


1989 ◽  
Vol 111 (4) ◽  
pp. 450-456 ◽  
Author(s):  
Y. Jinnouchi ◽  
Y. Araki ◽  
J. Inoue ◽  
S. Kubo

This paper is concerned with the dynamic instability of a high-speed rotor containing a partitioned cavity filled with two kinds of liquids of different density. The system considered simulates a centrifuge of two liquids type, in which the cylindrical cavity is divided into fan-shaped compartments in order to suppress asynchronous whirling motions induced by waves in the liquids traveling around the cavity. Assuming rotor vibrations to be small, liquids inviscid, and external damping negligible, perturbed motions of the liquid-rotor system are analyzed. The theory shows that the rotor containing a partitioned cavity can still exhibit unstable behavior, similar to that observed for a rotor system equipped with centrifugal pendula, in the region where the rotor speed is nearly equal to the sum of the critical speed of the system and the natural frequency of the liquids. The theory has been verified by the experiments. The dependence of the unstable region on the main system parameters is also discussed.


Author(s):  
Akanksha Dhurvey

Abstract: The aim of this paper is to represents a dynamic behavior of rotor bearing system wirth simply supported beam for three different position disc. rotating machinery such as compressors, turbines, pumps, jet engines, turtobo chargers, etc. are subject to vibrations. rotating machines are operated in very high speed and they are subjected to some unbalance force due to vibration from that machine pass to the foundation of machine.so the analysis of the dynamics parameter of rotor it is important to determine force transmissibility, natural frequency, critical speed and amplitudes of rotor system. Keywords: force transmissibility, vibration, critical speed, rotor bearing system etc.


Sign in / Sign up

Export Citation Format

Share Document