Development of Friction Drive Transmission

Author(s):  
Xiaolan Ai ◽  
Matthew Wilmer ◽  
David Lawrentz

Friction drive is a mechanical device that utilizes friction force to transmit torque and power. Since the power is transferred through shearing a thin layer of highly pressurized lubricant film formed between the mating surfaces. Friction drive possesses desired performance attributes that pertain to its unique operating principles. These attributes include high mechanical efficiency, minimal backlash, low noise and vibration and high-speed capability. The power density of a friction drive can be very high when operated at elevated speeds. These performance features, in conjunction with its inherent manufacturing simplicity, make friction drives suitable candidates for a host of applications. The current global technology trend towards electrification and increasing use of electric machines in auxiliary drives for both automotive and industrial applications presents a good opportunity for friction drives as a cost-effective alternative to conventional gear drives. The smooth high-speed performance feature of friction drives allows the use of more efficient high-speed motors to reduce motor size and thus improve system power density. A novel cylindrical friction drive was developed [1,2] for electric oil pump applications. The friction drive is to be integrated with an electric motor to provide necessary speed reduction. The friction drive, as shown in Figure 1, is comprised of an outer ring, a sun roller, a loading planet, two supporting planets and a stationary carrier. The sun roller is set eccentric to the outer ring to generate a wedge gap that facilitates a torque actuated loading mechanism for the friction drive. The loading planet is properly assembled in the wedge gap with frictional contact with the sun roller and the outer ring and is elastically supported on the carrier. By altering the ratio of the support stiffness to contact stiffness, the actual operating friction coefficient of the friction drive can be changed to suit for desired performance regardless the wedge angle. This provides a grater freedom for design optimization. Design analysis was presented and a FE model was developed to quantify design parameters. Prototypes of the friction drive were fabricated for testing. Major geometry parameters are listed in Table 1. Extensive testing was conducted to evaluate its performance. Figure 2 shows the schematic of test apparatus. It is comprised of a drive motor, a high-speed spindle, and a hydraulic brake pump. The motor drives the spindle through a rubber belt and a pair of pulleys. The spindle shaft connects to the input shaft of the friction drive thought an input torque meter. The output shaft of the friction drive couples to the hydraulic pump through an output torque meter. The torque meters pick up both speed and torque signals at input and output shafts of the friction drive, respectively. Thermo-couples are mounted to monitor temperatures at planet support shafts and at bearings of input and output shafts. An accelerometer was placed on the back plate of a mounting bracket to which the friction drive was bolted. It monitors the vibration signals of the friction drive for reference and safety purposes. A data acquisition system was used to collect and process all signals at predetermined sampling rate. The friction drive offered a consistent smooth and quite performance over a wide range of operating conditions. It was capable of operating at an elevated speed of up to 12000 rpm with adequate thermal characteristics. Figure 3 shows the steady sate temperature contour map as function of input shaft speed and output shaft torque. Results demonstrated that the friction drive has high power transmission efficiency under various test conditions. The peak efficiency exceeded 97%. Figure 4 plots the overall system efficiency as a function of output torque for various input speeds. Results also confirmed that the stiffness of the elastic support has an important impact on performance. The elastic support stiffness, in conjunction with, the contact stiffness determines the actual operating friction coefficient at the frictional contacts.

2012 ◽  
Vol 538-541 ◽  
pp. 768-772
Author(s):  
Wen Zhong Li ◽  
Fu Xiang Zhang

To reduce the excessive vibration of a high-speed rotor system as it passes its critical speed, a viscoelastic-friction damper(VEFD) are introduced into the support. Its stiffness factor is analyzed. Results show, the stiffness factor decreases with the cone angle increasing among 55-80 degrees monotonically. And it is the same trend when the stiffness of the damping material ring decreases. In the case of friction coefficient among 0.1-0.5, the stiffness factor increases monotonically. So adopted a proper structure, suitably chosen the above parameters and the axial stiffness of the outer-ring, the damper can present appropriate stiffness.


2012 ◽  
Vol 443-444 ◽  
pp. 1045-1049 ◽  
Author(s):  
Zhi Jie Wang ◽  
San Ming Liu ◽  
Lin Lin Luan ◽  
Hua Qiao Xiao

The value of brake friction coefficient have to do with temperature rises、speed、press and the influence of temperature rise is most large.Because high speed mine hoist come into being high temperature in apply the brake,it affect friction coefficient and capability of apply the brake system. therefore,unfold study brake temperature rise and friction coefficient forecast is very importance meaning.Because ANN can reflect non-line relation of input and output,this paper puts forward description mapping relation and effect to apply the brake safety of with temperature rises、speed、press and the influence.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Takashi Nogi ◽  
Kazuaki Maniwa ◽  
Noriko Matsuoka

Cage motions in ball bearings are investigated using a dynamic analysis program. Increases in the cage friction coefficient induce unstable motions of the cage. The instability is more likely to occur under high load and low‐speed conditions due to less ball-race sliding. A simple theory of cage instability is developed, and a critical cage friction coefficient formula is proposed, which is a function of the cage mass, ball-race traction, ball-cage contact stiffness, cage rotational speed, and number of balls. The prediction of this formula agrees with the results of the dynamic analysis. With a nonuniform separation between the balls, a high-speed whirl is superimposed on the normal whirl with the ball group speed. The direction of the high-speed whirl is the same as the cage rotational direction in inner race rotation (IR), but they are opposite in outer race rotation (OR). These results agree with some experimental results in the literature and validate the dynamic analysis.


2005 ◽  
Vol 127 (4) ◽  
pp. 857-864 ◽  
Author(s):  
Xiaolan Ai ◽  
Matthew Wilmer ◽  
David Lawrentz

A cylindrical friction drive was developed for electric oil pump applications. It was comprised of an outer ring, a sun roller, a loading planet, two supporting planets, and a stationary carrier. The sun roller was set eccentric to the outer ring to generate a wedge gap that facilitates a torque actuated loading mechanism for the friction drive. The loading planet was properly assembled in the wedge gap and elastically supported to the carrier. By altering the stiffness ratio of the elastic support to contact, the actual operating friction coefficient of the friction drive can be changed regardless of the wedge angle to suit for performance requirement. This provided a greater freedom for design and performance optimization. Design analysis was presented and a FE model was developed to quantify design parameters. Prototypes of the friction drive were fabricated and extensive testing was conducted to evaluate its performance. Results indicated the performance of the friction drive far exceeded the design specifications in speed, torque, and power ratings. The friction drive offered a consistent smooth and quiet performance over a wide range of operating conditions. It was capable of operating at an elevated speed of up to 12 000 rpm with adequate thermal characteristics. The friction drive demonstrated a peak efficiency above 97%. Results confirmed that the stiffness of the elastic support has an important impact on performance. The elastic support stiffness, in conjunction with the contact stiffness, determines the actual operating friction coefficient at the frictional contacts.


Author(s):  
E. L. Wolf

Protons in the Sun’s core are a dense plasma allowing fusion events where two protons initially join to produce a deuteron. Eventually this leads to alpha particles, the mass-four nucleus of helium, releasing kinetic energy. Schrodinger’s equation allows particles to penetrate classically forbidden Coulomb barriers with small but important probabilities. The approximation known as Wentzel–Kramers–Brillouin (WKB) is used by Gamow to predict the rate of proton–proton fusion in the Sun, shown to be in agreement with measurements. A simplified formula is given for the power density due to fusion in the plasma constituting the Sun’s core. The properties of atomic nuclei are briefly summarized.


2020 ◽  
Vol 12 (12) ◽  
pp. 168781402098437
Author(s):  
Liu Jiang ◽  
Guo Zhiping ◽  
Miao Shujing ◽  
He Xiangxin ◽  
Zhu Xinyu

In order to meet the requirements of output torque, efficiency and compact shape of micro-spindles for small parts machining, a two-stage axial micro air turbine spindle with an axial inlet and outlet is proposed. Based on the k-ω turbulence model of SST, the flow field and operation characteristics of the two-stage axial micro air turbine spindle were studied using computational fluid dynamics (CFD) combined with an experimental study. We obtained the air turbine spindle under different working conditions of the loss and torque characteristics. When the inlet pressure was 300 KPa, the output speed of the two-stage turbine was 100,000 rpm, 9% higher than that of a single-stage turbine output torque. The total torque reached 6.39 N·mm, and the maximum efficiency of the turbine and the spindle were 42.2% and 32.3%, respectively. Through the research on the innovative structure of the two-stage axial micro air turbine spindle, the overall performance of the principle prototype has been significantly improved and the problems of insufficient output torque and low working efficiency in high-speed micro-machining can be solved practically, which laid a solid foundation for improving the machining efficiency of small parts and reducing the size of micro machine tool.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4144
Author(s):  
Yatai Ji ◽  
Paolo Giangrande ◽  
Vincenzo Madonna ◽  
Weiduo Zhao ◽  
Michael Galea

Transportation electrification has kept pushing low-voltage inverter-fed electrical machines to reach a higher power density while guaranteeing appropriate reliability levels. Methods commonly adopted to boost power density (i.e., higher current density, faster switching frequency for high speed, and higher DC link voltage) will unavoidably increase the stress to the insulation system which leads to a decrease in reliability. Thus, a trade-off is required between power density and reliability during the machine design. Currently, it is a challenging task to evaluate reliability during the design stage and the over-engineering approach is applied. To solve this problem, physics of failure (POF) is introduced and its feasibility for electrical machine (EM) design is discussed through reviewing past work on insulation investigation. Then the special focus is given to partial discharge (PD) whose occurrence means the end-of-life of low-voltage EMs. The PD-free design methodology based on understanding the physics of PD is presented to substitute the over-engineering approach. Finally, a comprehensive reliability-oriented design (ROD) approach adopting POF and PD-free design strategy is given as a potential solution for reliable and high-performance inverter-fed low-voltage EM design.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4215
Author(s):  
Radosław Wróbel ◽  
Lech Sitnik ◽  
Monika Andrych-Zalewska ◽  
Łukasz Łoza ◽  
Radostin Dimitrov ◽  
...  

The article presents the results of research on the vibroacoustic response of internal combustion engines mounted in a vehicle. The vehicles studied belong to popular models, which became available in successive versions. Each group included vehicles of the same model of an older generation (equipped with a naturally aspirated engine) and of a newer generation, including downsized (and turbocharged) engines. Tests in each group were carried out under repeatable conditions on a chassis-load dynamometer. The vibrations were measured using single-axis accelerometers mounted on the steering wheel, engine, and driver’s head restraint mounting. The primary purpose of the study was to verify whether the new generations of vehicles equipped with additional high-speed elements (compressors) generate additional harmonics (especially those within the range potentially affecting travel comfort and human health) and whether there are significant changes in the distribution of spectral power density in the new generations. As the study showed, new generations of vehicles are characterized by a different vibroacoustic response, and the trend of change is the same in each of the families studied.


2010 ◽  
Vol 148-149 ◽  
pp. 1182-1187 ◽  
Author(s):  
Hu Jun Jia ◽  
Yin Tang Yang ◽  
Chang Chun Chai

Some new techniques include n- shielding, buried channel and field plate are firstly adopted together for design and fabrication of 4H-SiC microwave MESFETs. The testing results show that a relatively broad and uniform transconductance versus gate voltage was obtained using a 0.1m n- shielding. 0.3mm gate periphery device shows good DC and RF performance such as 5.27W/mm power density, 6.7dB power gain and 43% power added efficiency at 2.3GHz under pulse operation. Compared to conventional SiC MESFETs, a gate lag ratio as high as 0.84 can be achieved for the developed devices even under a nearly actual operating condition.


Sign in / Sign up

Export Citation Format

Share Document