Carbon Black Selective Dispersion and Electrical Properties of Epoxy Resin/Polystyrene/Carbon Black Ternary Composites

2012 ◽  
Vol 548 ◽  
pp. 94-98 ◽  
Author(s):  
Chuan Guo Ma ◽  
Ming Liu

Carbon black (CB) selective dispersion and conductive properties of immiscible thermoplastic/thermosetting polymer blends consisting of polystyrene (PS) and epoxy resin (EP) were investigated in this paper. The results showed that CB particles are preferentially localized in EP phase in PS/EP blends. The blend with 10 pbw (parts by weight) PS presented an EP continuous phase structure, and both blends with 20 pbw and 30 pbw developed into a bi-continuous phase structure. The selective dispersion of CB particles was explained by thermodynamic parameters. The phase structures of blends have important influences on both conductive and dielectric properties. The blends with 10 pbw PS has a very low percolation threshold nearly 0.25wt%.

2013 ◽  
Vol 652-654 ◽  
pp. 73-76
Author(s):  
Rui Shi ◽  
Chuan Guo Ma ◽  
Ming Liu

Selective dispersion of carbon black (CB) in three kinds of epoxy resin (EP)/ thermoplastic multiphase conductive polymer composites were investigated. The thermoplastics involved polystyrene (PS), polyethersulfone (PES) and polyetherimide (PEI). The results showed that the selective location of CB particles are mainly controlled by thermodynamics as indicated by consistency of wetting coefficient prediction and real microstructure. For CB/EP/PS, with co-continuous phase structure, CB particles are not selectively located in one polymer but located in both EP-rich phase and PS-rich phase. For CB/EP/PES, with not perfect inverted phase structure, CB particles are selectively located in PES-rich phase. For CB/EP/PEI, with perfect inverted phase structure, CB particles are selectively located in PEI-rich phase.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1916 ◽  
Author(s):  
Mauro Giorcelli ◽  
Mattia Bartoli

In this work we focused our attention on an innovative use of food residual biomasses. In particular, we produced biochar from coffee waste and used it as filler in epoxy resin composites with the aim to increase their electrical properties. Electrical conductivity was studied for the biochar and biochar-based composite in function of pressure applied. The results obtained were compared with carbon black and carbon black composites. We demonstrated that, even if the coffee biochar had less conductivity compared with carbon black in powder form, it created composites with better conductivity in comparison with carbon black composites. In addition, composite mechanical properties were tested and they generally improved with respect to neat epoxy resin.


1930 ◽  
Vol 3 (4) ◽  
pp. 733-742
Author(s):  
W. B. Wiegand ◽  
C. R. Boggs

Abstract 1—It has been shown that, in conformity with published behavior of other conducting substances (metallic sols, etc.), carbon black may be incorporated in a dielectric such as rubber without detracting from its insulating or dielectric properties. Published results to the contrary were in error, probably because the material was added in excessive amounts. 2—In addition to this effect, it has been shown that the well-known ability of carbon black to adsorb water and dissolved electrolytes endows carbon black???rubber insulating compounds of various types with improved dielectric strength, resistivity, and power factor, the specific inductive capacity remaining substantially unchanged. In some cases this improvement may exceed 50 per cent. 3—The prevailing opinion that carbon black is injurious to rubber insulating compounds which are to be used next to the wire, or which in general are expected to serve as electrical insulation, has been shown to be erroneous, provided the proper proportions are employed. 4—These results would seem to render advisable the rewriting of many specifications dealing with rubber insulating compounds, and thus make it possible to apply the well-known beneficial effects of carbon black compounding—improved toughness, density, wearing resistance, imperviousness to light, tear resistance, etc.—to the electrical insulation field, from which it has hitherto been barred. 5—Although it is strongly recommended that the proper dosage of carbon black (which must be of suitable quality and thoroughly dry) be redetermined in each case, the writers' results would indicate that up to 10 per cent of carbon black on the crude rubber (plus the rubber content of any reclaimed rubber present) will effect the desired improvement in electrical properties.


2011 ◽  
Vol 11 (10) ◽  
pp. 9110-9117 ◽  
Author(s):  
S. Bellucci ◽  
L. Coderoni ◽  
F. Micciulla ◽  
G. Rinaldi ◽  
I. Sacco

1992 ◽  
Vol 75 (3) ◽  
pp. 109-116 ◽  
Author(s):  
Shuhei Nakamura ◽  
Atushi Ito ◽  
Goro Sawa ◽  
Keiichi Kitagawa

2021 ◽  
Vol 105 (1) ◽  
pp. 461-466
Author(s):  
Helena Polsterova

Nanocomposites are subject of research in many fields of science. Electrical technology focused on the study of electrical properties of nanocomposites including breakdown strength, relative permittivity, resistivity and other. This paper describes the results of measurement of electrical parameters of a nanocomposite at various temperatures. The nanocomposite matrix was casting epoxy resin and nanoparticles were made of TiO2 powder at different concentrations.


1995 ◽  
Vol 28 (5) ◽  
pp. 1559-1566 ◽  
Author(s):  
F. Gubbels ◽  
S. Blacher ◽  
E. Vanlathem ◽  
R. Jerome ◽  
R. Deltour ◽  
...  

2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Hangming Shen ◽  
Donggang Yao ◽  
Wei Zhang ◽  
Qian Ye

Abstract There has been growing interest in integrating gradient porous structures into synthetic materials like polymers. One particular method for making gradient porous polymers is nonisothermal annealing of co-continuous phase structures of immiscible polymer blends under well-defined thermal boundary conditions. In this paper, we report a method to simulate this nonisothermal phase coarsening process for the generation of gradient-phase structures by the combined implementation of phase-field transport and momentum transport. Specifically, a phase-field equation is solved first to obtain a phase structure with phase size comparable with that of the blend to be annealed. This phase structure is then used as an initial geometry in a two-phase moving-interface flow simulation to gauge into the phase structure coarsening process. Several case studies were performed, and the results show that the controllable generation of gradient-phase structures can be enabled by well-designed geometry and thermal boundary conditions. Using 2D simulations, different types of gradient-phase structures experimentally observed were predicted. With increasing power in computation, the capability of 3D simulation may be unveiled for a more accurate prediction of the nonisothermal phase coarsening process and may ultimately evolve into a useful tool for the design and processing of gradient porous polymers.


Sign in / Sign up

Export Citation Format

Share Document