Carbon Black in Rubber Insulating Compounds

1930 ◽  
Vol 3 (4) ◽  
pp. 733-742
Author(s):  
W. B. Wiegand ◽  
C. R. Boggs

Abstract 1—It has been shown that, in conformity with published behavior of other conducting substances (metallic sols, etc.), carbon black may be incorporated in a dielectric such as rubber without detracting from its insulating or dielectric properties. Published results to the contrary were in error, probably because the material was added in excessive amounts. 2—In addition to this effect, it has been shown that the well-known ability of carbon black to adsorb water and dissolved electrolytes endows carbon black???rubber insulating compounds of various types with improved dielectric strength, resistivity, and power factor, the specific inductive capacity remaining substantially unchanged. In some cases this improvement may exceed 50 per cent. 3—The prevailing opinion that carbon black is injurious to rubber insulating compounds which are to be used next to the wire, or which in general are expected to serve as electrical insulation, has been shown to be erroneous, provided the proper proportions are employed. 4—These results would seem to render advisable the rewriting of many specifications dealing with rubber insulating compounds, and thus make it possible to apply the well-known beneficial effects of carbon black compounding—improved toughness, density, wearing resistance, imperviousness to light, tear resistance, etc.—to the electrical insulation field, from which it has hitherto been barred. 5—Although it is strongly recommended that the proper dosage of carbon black (which must be of suitable quality and thoroughly dry) be redetermined in each case, the writers' results would indicate that up to 10 per cent of carbon black on the crude rubber (plus the rubber content of any reclaimed rubber present) will effect the desired improvement in electrical properties.

1949 ◽  
Vol 22 (1) ◽  
pp. 232-244
Author(s):  
D. G. Fisher ◽  
J. R. Scott ◽  
W. H. Willott

Abstract Tests have been made on unloaded ebonites prepared from ordinary commercial types of natural rubber, special (deproteinized) rubbers having reduced contents of protein and(or) other water-absorbent substances, and a whole-latex rubber containing relatively large percentages of these substances, to determine to what extent these substances influence the electrical properties of the ebonite and, hence, whether any technically useful improvement can be effected by using specially prepared rubbers. Permittivity and power factor at 106 cycles per second, but particularly power factor, are somewhat improved by using the special rubbers, so that the dielectric loss can be reduced by about 30 per cent. In addition, the increase in dielectric loss caused by exposure to high humidity or by a rise of temperature is in general lessened by the use of these rubbers. Similar, though smaller, improvements in the properties of the ebonite are obtained by washing ordinary commercial rubber (smoked sheet). Although a definite improvement in dielectric loss is obtained, it does not seem probable that purification of natural rubber would lead to ebonites with dielectric properties approaching those of polystyrene, for instance. It seems unlikely that even complete elimination of the water-absorbent impurities would reduce the dielectric loss by more than 50 per cent; the rubber-sulfur compound itself thus appears to be responsible for a fair proportion of the loss normally observed. The large percentages of water-soluble substances present in whole-latex rubber increase the permittivity and especially the power factor of the ebonite made from it. The dielectric properties of ebonite are related, though not closely, to its water-absorbing capacity and that of the raw rubber used, low absorption being in general accompanied by low dielectric loss and reduced sensitiveness to humidity variations. There is only a rough parallelism between the water absorptions of raw rubbers and the corresponding ebonites. Probable reasons for this are indicated. It is concluded that water absorption tests on raw rubber form a useful, though only approximate, guide to its value for making electrical ebonite; electrical tests on the ebonite must be the final criterion. Apart from very impure whole-latex rubber, no correlation can be traced between the inorganic content (ash) of ebonite and its electrical properties. The probable reason for this is indicated. There is evidence that the dielectric loss of ebonite may increase with the passage of time. In view of its obvious theoretical and practical importance, this phenomenon requires further study. No technically useful advantage as regards breakdown strength, volume resistivity, surface resistivity, or stability to light, by the use of the special rubbers, is evident in the present work. The plastic yield characteristics of ebonite are not appreciably altered by using special rubbers. Estimations of uncombined sulfur and also plastic yield tests show that one of the deproteinized rubbers vulcanizes more rapidly than the rest, which differ little among themselves.


2012 ◽  
Vol 548 ◽  
pp. 94-98 ◽  
Author(s):  
Chuan Guo Ma ◽  
Ming Liu

Carbon black (CB) selective dispersion and conductive properties of immiscible thermoplastic/thermosetting polymer blends consisting of polystyrene (PS) and epoxy resin (EP) were investigated in this paper. The results showed that CB particles are preferentially localized in EP phase in PS/EP blends. The blend with 10 pbw (parts by weight) PS presented an EP continuous phase structure, and both blends with 20 pbw and 30 pbw developed into a bi-continuous phase structure. The selective dispersion of CB particles was explained by thermodynamic parameters. The phase structures of blends have important influences on both conductive and dielectric properties. The blends with 10 pbw PS has a very low percolation threshold nearly 0.25wt%.


2016 ◽  
Vol 89 (1) ◽  
pp. 32-53 ◽  
Author(s):  
C. M. Roland

ABSTRACT This review describes electrical and dielectric measurements of rubbery polymers. The interest in the electrical properties is primarily due to the strong effect of conductive fillers, the obvious example being carbon black. Conductivity measurements can be used to probe dispersion and the connectivity of filler particles, both of which exert a significant influence on the mechanical behavior. Dielectric relaxation spectra are used to study the dynamics, including the local segmental dynamics and secondary relaxations, and for certain polymers the global chain modes. A recent development in the application of nonlinear dielectric spectroscopy is briefly discussed.


Author(s):  
Istebreq A. Saeedi ◽  
Sunny Chaudhary ◽  
Thomas Andritsch ◽  
Alun S. Vaughan

AbstractReactive molecular additives have often been employed to tailor the mechanical properties of epoxy resins. In addition, several studies have reported improved electrical properties in such systems, where the network architecture and included function groups have been modified through the use of so-called functional network modifier (FNM) molecules. The study reported here set out to investigate the effect of a glycidyl polyhedral oligomeric silsesquioxane (GPOSS) FNM on the cross-linking reactions, glass transition, breakdown strength and dielectric properties of an amine-cured epoxy resin system. Since many previous studies have considered POSS to act as an inorganic filler, a key aim was to consider the impact of GPOSS addition on the stoichiometry of curing. Fourier transform infrared spectroscopy revealed significant changes in the cross-linking reactions that occur if appropriate stoichiometric compensation is not made for the additional epoxide groups present on the GPOSS. These changes, in concert with the direct effect of the GPOSS itself, influence the glass transition temperature, dielectric breakdown behaviour and dielectric response of the system. Specifically, the work shows that the inclusion of GPOSS can result in beneficial changes in electrical properties, but that these gains are easily lost if consequential changes in the matrix polymer are not appropriately counteracted. Nevertheless, if the system is appropriately optimized, materials with pronounced improvements in technologically important characteristics can be designed.


2009 ◽  
Vol 151 ◽  
pp. 67-71 ◽  
Author(s):  
Wai Kit Li ◽  
Y.W. Wong

Electrospinning is an efficient technique for the fabrication of polymer nanofibers. The charges inside the polymer jet tend to repel each other so as to stretch and reduce the diameter of the polymer fibers. By rotating the collector at a fast angular speed, nanofibers with specific orientation can be obtained. In this study, nanofibers of Polyethylene oxide (PEO) with carbon black were prepared by electrospinning. PEO was dissolved in a mixture of water and ethanol. PEO is known as an electrolytic polymer. With the blending of carbon black powders, its electrical properties along the fiber direction were investigated. The fiber morphology and characteristics were studied by SEM and polarized FTIR.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3294
Author(s):  
Jakkree Boonlakhorn ◽  
Jedsada Manyam ◽  
Pornjuk Srepusharawoot ◽  
Sriprajak Krongsuk ◽  
Prasit Thongbai

The effects of charge compensation on dielectric and electrical properties of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics (x = 0−0.05) prepared by a solid-state reaction method were studied based on the configuration of defect dipoles. A single phase of CaCu3Ti4O12 was observed in all ceramics with a slight change in lattice parameters. The mean grain size of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics was slightly smaller than that of the undoped ceramic. The dielectric loss tangent can be reduced by a factor of 13 (tanδ ~0.017), while the dielectric permittivity was higher than 104 over a wide frequency range. Impedance spectroscopy showed that the significant decrease in tanδ was attributed to the highly increased resistance of the grain boundary by two orders of magnitude. The DFT calculation showed that the preferential sites of Al and Nb/Ta were closed together in the Ti sites, forming self-charge compensation, and resulting in the enhanced potential barrier height at the grain boundary. Therefore, the improved dielectric properties of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics associated with the enhanced electrical properties of grain boundaries. In addition, the non-Ohmic properties were also improved. Characterization of the grain boundaries under a DC bias showed the reduction of potential barrier height at the grain boundary. The overall results indicated that the origin of the colossal dielectric properties was caused by the internal barrier layer capacitor structure, in which the Schottky barriers at the grain boundaries were formed.


Author(s):  
Bluma G. Soares ◽  
Katia M. N. Gamboa ◽  
Angelo J. B. Ferreira ◽  
Edson Ueti ◽  
Sergio S. Camargo

1944 ◽  
Vol 17 (2) ◽  
pp. 451-474
Author(s):  
D. Parkinson

Abstract Carbon blacks can be grouped into different classes according to the way in which their fineness of division relates to different properties in rubber. Within any one class the principal properties vary in a regular manner with particle size. The normal class consists of the furnace carbons, Kosmos (Dixie)-40, Statex, the rubber-grade impingement carbons, and possibly, the color-grade impingement carbons. The subnormal classes consist of thermal carbons and acetylene and lamp blacks. Irrespective of the above classification, the properties which depend more on fineness of division than on other factors are rebound resilience, abrasion resistance, tensile strength and tear resistance. The lower limit of particle diameter for best tensile strength and tear resistance appears to be higher than that for abrasion resistance. B.S.I, hardness and electrical conductivity are properties which depend at least as much on other factors as on particle size. Stiffness (modulus) depends more on other factors than on particle size. Factors modifying the effects of particle size (or specific surface) include the presence of carbon-carbon structures and a reduction in strength of bond in rubber-carbon structures. Carbon black is thought to exist in rubber in four states: agglomerated, flocculated, dispersed, and bonded to the rubber molecules (the reënforcing fraction). Abrasion resistance is regarded as providing the only reliable measure of reënforcement.


Sign in / Sign up

Export Citation Format

Share Document