Origin of P-E Hysteresis Offsets in Compositionally Graded Ba(1-x)SrxTiO3 Thick Films

2008 ◽  
Vol 55-57 ◽  
pp. 15-22 ◽  
Author(s):  
Jeremie Barrel ◽  
Eugene Stytsenko ◽  
Massimo Viviani ◽  
Kenneth MacKenzie

Compositionally graded Ba(1-x)SrxTiO3 thick films were fabricated by the airflow deposition technique. Films displayed hysteresis translation along the polarization axis when driven by an alternating electric field. The trend of the hysteresis shift as a function of temperature is similar to the difference of DC currents measured when a positive and negative DC electric field is applied. The study suggests that the origin of this phenomenon lies in an asymmetry of the film conductance due to the presence of asymmetric Schottky contacts at the BaTiO3/Ag and Ag/Ba0.xSr1-0.xTiO3 interfaces.

2001 ◽  
Vol 688 ◽  
Author(s):  
Lucian Pintilie ◽  
Ion Matei ◽  
Ioana Pintilie ◽  
Horia V. Alexandru ◽  
Ciceron Berbecaru

AbstractPyroelectric properties of triglycine sulfate (TGS) thick films, separately doped with L and D alanine were investigated. Internal bias field of about 1 kV/cm, induced by the two dopants, stabilize the polarization in the opposite direction on the ferroelectric axis. Pyroelectric current (under constant stress) was recorded with a computer controlled Keithley 6517 electrometer, crossing up and down the Curie point. A reverse external electric field was applied on doped materials during heating, crossing up the Curie point. It is shown that the pyroelectric coefficient can be increased about four times at room temperature under un optimized DC electric field applied on the pyroelectric wafer.


2007 ◽  
Vol 21 (28n29) ◽  
pp. 4782-4789 ◽  
Author(s):  
TOMAS BELZA ◽  
VLADIMIR PAVLINEK ◽  
IVO KURITKA ◽  
PETR SAHA ◽  
OTAKAR QUADRAT

In this study, electrorheological (ER) behaviour of silica nanocomposite suspensions treated with urea and N , N – dimethylformamide (DMF) in DC electric field has been investigated. While the ER effect of the neat silica itself was very low, the modification of silica nanoparticles improved compatibility of the solid and liquid phase and increased considerably ER activity of the system. In contrast to maximum possible concentration about 5 wt.% of neat silica due to particle aggregation 20 wt.% suspension of treated particles with low field-off viscosity could be prepared. The dielectric measurements showed that with increasing amount of urea deposited on the silica particles both the difference between the limit values of the relative permittivities and the relaxation frequency increased. This indicates a great influence of both particle polarizability and the rate of rearrangement of the ER structure in the electric field on the ER intensity. After DMF addition the changes in dielectric properties reflected the higher ER activity. At higher particle loading (25 wt.%) mutual particle interaction increased and field-off viscosity steeply rose. The comparison of the behavior of 20 and 25 wt.% suspensions of modified particles showed that even if high yield stress at higher particle content under electric field application sets in, its relative increase indicating the ER efficiency due to high field-off value may be much lower than at lower suspension loading.


2012 ◽  
Vol 503 ◽  
pp. 97-102 ◽  
Author(s):  
Xiu Jian Chou ◽  
Miao Xuan Du ◽  
Yong Bo Lv ◽  
Jun Liu ◽  
Wen Dong Zhang

Pb0.97La0.02(Zr0.95Ti0.05)O3 antiferroelectric thick films were prepared on platinized silicon substrates by sol–gel methods. Films showed polycrystalline perovskite structure with a strong (100) preferred orientation. The antiferroelectric nature of the films was confirmed by the double hysteresis behaviors versus applied field. The temperature dependence of dielectric constant and loss displayed the Curie temperature was 225oC.The current caused by the polarization and depolarization of polar was detected at coupling application of electric field and temperature. The phase transition characterization could be effectively adjusted by electric field and temperature.


2019 ◽  
Vol 9 (3) ◽  
pp. 344-352 ◽  
Author(s):  
L.I. Stefanovich ◽  
O.Y. Mazur ◽  
V.V. Sobolev

Introduction: Within the framework of the phenomenological theory of phase transitions of the second kind of Ginzburg-Landau, the kinetics of ordering of a rapidly quenched highly nonequilibrium domain structure is considered using the lithium tantalate and lithium niobate crystals as an example. Experimental: Using the statistical approach, evolution equations describing the formation of the domain structure under the influence of a high-frequency alternating electric field in the form of a standing wave were obtained. Numerical analysis has shown the possibility of forming thermodynamically stable mono- and polydomain structures. It turned out that the process of relaxation of the system to the state of thermodynamic equilibrium can proceed directly or with the formation of intermediate quasi-stationary polydomain asymmetric phases. Results: It is shown that the formation of Regular Domain Structures (RDS) is of a threshold character and occurs under the influence of an alternating electric field with an amplitude less than the critical value, whose value depends on the field frequency. The conditions for the formation of RDSs with a micrometer spatial scale were determined. Conclusion: As shown by numerical studies, the RDSs obtained retain their stability, i.e. do not disappear even after turning off the external electric field. Qualitative analysis using lithium niobate crystals as an example has shown the possibility of RDSs formation in high-frequency fields with small amplitude under resonance conditions


1990 ◽  
Vol 68 (8) ◽  
pp. 3865-3871 ◽  
Author(s):  
Jian‐chun Cheng ◽  
Shu‐yi Zhang ◽  
Yue‐sheng Lu

Sign in / Sign up

Export Citation Format

Share Document