Effect of Y on Cyclic Oxidation Behavior of FeCrNi Heat-Resisting Steel

2012 ◽  
Vol 557-559 ◽  
pp. 170-174
Author(s):  
Xiao Liu ◽  
Long Mei Wang

The oxidation resistance of FeCrNi heat-resisting steel at 1150°C and 1200°C is analyzed and studied using XRD, SEM and EDS techniques. The results show that the oxidation resistance of the heat-resisting steel is improved remarkably after adding yttrium. The value of oxidation rate of experimental Sample 1 (without adding Y) is 3.25 times and 1.56 times higher than Sample 2, respectively at 1150°C and 1200°C after oxidizeing for totally 144h. On the surface of the heat-resisting steel containing Y, the dense and adherent Cr2O3 scale and FeCr2O4 scale are formed and played the protection role. In the internal oxidation layer, the pinning effect of silicon dioxide is strengthened by Y, and Y has a pining effect directly.

2014 ◽  
Vol 528 ◽  
pp. 25-29
Author(s):  
Ling Yun Bai ◽  
Xian Chao Xu ◽  
Jun Huai Xiang ◽  
Yun Xiang Zheng ◽  
Jun Wang

The cyclic oxidation behavior of Co-10Cr-5Al alloys in atmosphere at 700 °C was investigated. The addition of 0.3 at.% Y changed the oxidation behavior from the approximate parabolic rate law to complex mode. The scale grown on the surface of Co-10Cr-5Al cracked seriously, while the oxide scale the Y doped alloy had better adhesive property. Yttrium doped in the sample promoted the forming of continuous Al2O3layer and decreased the oxidation rate of Co-10Cr-5Al alloys.


2014 ◽  
Vol 1015 ◽  
pp. 505-508
Author(s):  
Ling Yun Bai ◽  
Hong Hua Zhang ◽  
Huai Shu Zhang ◽  
Yun Xiang Zheng ◽  
Jun Huai Xiang

The cyclic oxidation behavior of Co-10Cr-5Al alloys with and without 0.3 at% Y doped in atmosphere at 800oC was investigated. The addition of 0.3 at.% Y increased the oxidation rate of the alloy and changed the oxidation mechanism. The scales grown the alloys with and without Y were both composed of an outer Co2O3layer and an inner complex layer of Al2O3, Co2O3and Cr2O3, except that the addition of 0.3 at% Y enhanced the adhesion of the scale. 0.3 at% Y agglomerated in local zone which accelerated the oxidation rate and was not conductive to the oxidation process of the Co-10Cr-5Al alloy.


2011 ◽  
Vol 366 ◽  
pp. 40-44 ◽  
Author(s):  
Ping Yu ◽  
Long Shi ◽  
Wen Wang ◽  
Fu Hui Wang

The oxidation behavior of K38 alloy with 0, 0.05, 0.1, 0.5wt% yttrium concentrations has been investigated during exposures in air at 1173K for 100 hours. The results indicated that Cr2O3 and TiO2 scale mainly formed on the surface of the alloy without yttrium. Yttrium addition promoted the selective oxidation of aluminum and reduced the internal oxidation. The alloy with 0.1 wt.% yttrium addition exhibits excellent oxidation behavior among the four types of the alloys for its decreasing the oxidation rate and forming more continuous and compact Al2O3 scales. Yttrium-rich phase formed in the alloy with 0.5wt.% yttrium, result in a negative effect on the oxidation resistance of cast alloys.


2013 ◽  
Vol 785-786 ◽  
pp. 844-847
Author(s):  
Jun Huai Xiang ◽  
Xian Chao Xu ◽  
Ling Yun Bai ◽  
Yun Xiang Zheng ◽  
Huai Shu Zhang

The cyclic oxidation behavior of Co-10Cr-5Al alloys with and without Y in atmosphere at 800 °C was investigated. The addition of 0.3 at.% Y increased the oxidation rate of the alloy and changed the behavior from irregular oxidation kinetics to approximate parabolic rate law. The scales grown the alloys with and without Y were both composed of an outer Co2O3layer and an inner complex layer of Al2O3, Co2O3and Cr2O3, except that the addition of Y impaired the adhesion of the scale. Over-doped Y agglomerated in local zone plays an adverse role in the oxidation process by accelerating the oxidation rate.


2011 ◽  
Vol 148-149 ◽  
pp. 534-537
Author(s):  
Chun Xiang Gao

A very effective approach to improve the oxidation resistance of Ti-6Al-4V alloy was proposed. The Ti-6Al-4V alloy was firstly phosphated and then coated by silica using sol-gel dip-coating technique. A duplex layer of TiP2O7 and amorphous silica was synthesized at the alloy surface. The isothermal and cyclic oxidation behavior of the treated alloy with silica coating and the corresponding bare alloy was investigated at 600 oC in static air to investigate the synergetic effect of phosphorization and amorphous SiO2 coating on the oxidation resistance of the alloy. The isothermal and cyclic oxidation resistances of the alloy were greatly improved.


2014 ◽  
Vol 1025-1026 ◽  
pp. 504-508 ◽  
Author(s):  
Sang An Ha ◽  
Dong Kyun Kim ◽  
Woo Jin Lee ◽  
Chang Yong Kang ◽  
Kwon Hoo Kim ◽  
...  

Comparison study of oxidation behavior of low carbon steel was conducted at the temperature range of 500°C to 700°C under a 0.2 atm oxygen pressure by continuous and discontinuous oxidation methods. Oxidation rate of both cases was found to be increased with increasing temperature from 500°C to 700°C and obeyed parabolic rate law. In addition, activation energy for the continuous oxidation of steel was found to be a 164.8 kJ/mole, which means that oxidation rate is proportionally dependant on temperature. In case of cyclic oxidation, the oxidation rate was shown to faster than continuous oxidation at all temperatures due to direction oxidation through spallation of the oxide layer.


RSC Advances ◽  
2014 ◽  
Vol 4 (99) ◽  
pp. 55696-55708 ◽  
Author(s):  
Jiang Xu ◽  
ZhengYang Li ◽  
Paul Munroe ◽  
Zong-Han Xie

To explore the influence of Al alloying on the oxidation resistance of MoSi2, four Mo(Si1−xAlx)2 nanocrystalline films were fabricated on Ti–6A1–4V substrates and their cyclic oxidation behavior was characterized.


2011 ◽  
Vol 391-392 ◽  
pp. 606-610 ◽  
Author(s):  
Huai Shu Zhang ◽  
Hong Hua Zhang ◽  
Jun Huai Xiang ◽  
Shan Wang ◽  
Di Wu

The oxidation behavior of Co-10Cr-5Al-0.3Y alloy in 1 atm of pure O2 at 700°C was investigated. The addition of 0.3 at.%Y significantly increased the oxidation rate of the alloy and changed the oxidation behavior from the approximate parabolic rate law to linear rate law. The scale grown on the surface at 700°C was porous with many small voids and cracks, and was composed of an outer CoO layer and an inner complex layer rich in Al2O3 and Cr2O3 which were intermingled with yttric oxide and spinel Co(Cr, Al)2O4.


2013 ◽  
Vol 785-786 ◽  
pp. 914-917
Author(s):  
Jun Huai Xiang ◽  
Xian Chao Xu ◽  
Ling Yun Bai ◽  
Yun Xiang Zheng ◽  
Huai Shu Zhang

The cyclic oxidation behavior of Co-10Cr-5Si alloys with and without Y in atmosphere at 800 °C was investigated. The addition of 0.3 at.% Y decreased the average parabolic rate constant from 4.45×10-10g2cm-2s-1to 3.58×10-10g2cm-2s-1. The thin scales grown on Co-10Cr-5Si alloys were mainly composed of an outer CoO layer, followed by an inner protective SiO2layer. However, the scales can not be observed for Co-10Cr-5Si-0.3Y alloy, probably due to the spallation of the scales during the cooling process. The addition of 0.3 at.% Y improved the cyclic oxidation resistance of the Co-10Cr-5Al alloy.


2013 ◽  
Vol 747-748 ◽  
pp. 575-581 ◽  
Author(s):  
Yu Zhuo Liu ◽  
Qiong Wu ◽  
Shu Suo Li ◽  
Yue Ma ◽  
Sheng Kai Gong

An Al-Si coating was prepared on IC21 alloy by powder pack cementation. The cyclic oxidation tests were carried out at 1150 in air for up to 100 h. The results indicate that the oxidation resistance of IC21 alloy is significantly improved by the Al-Si coating due to the presence of Ni2Al3and β-NiAl enriched outer layer, and Si can effectively supress the outward diffusion of Mo. The oxide scales mainly consist of α-Al2O3, which is the favorite to the oxidation resistance. Phase transformation occurred from β-NiAl to γ-Ni3Al and γ-Ni in the coating during oxidation. The coating still remained a certain amount of β phase after oxidation for 100h, which indicate a good protection. The microstructure change evolution was characterized, and the oxidation behavior of the coating was discussed.


Sign in / Sign up

Export Citation Format

Share Document