Preparation of Al/SiO2 Composite Coatings on the Surface of Aluminum Alloy through Atmospheric Plasma Spraying

2012 ◽  
Vol 560-561 ◽  
pp. 1041-1047
Author(s):  
Pei Hu Gao ◽  
Lei Li ◽  
Jian Ping Li ◽  
Zhong Yang ◽  
Yong Chun Guo

In this work, Al/SiO2composite coatings were deposited on the surface of aluminum alloy through atmospheric plasma spray. The effects of SiO2volume in Al/SiO2composite powders on the deposition behavior were investigated. It was found that the deposition of the Al/SiO2composite powder became more difficult through plasma spray with the increasing of SiO2contents. There were reactions between aluminium and silicon oxide during the deposition of Al/SiO2powders in the plasma flame. The reactions were helpful to interface cohesions between aluminium and silicon oxide. Al/SiO2(60:40, 80:20) composites were more suitable for deposition and well interface cohesion through atmospheric plasma spray.

2014 ◽  
Vol 602-603 ◽  
pp. 552-555
Author(s):  
Dan Lu ◽  
Ya Ran Niu ◽  
Xue Lian Ge ◽  
Xue Bing Zheng ◽  
Guang Chen

In this work, atmospheric plasma spray (APS) technology was applied to fabricate ZrC-W composite coatings. The microstructure of the composite coatings was characterized. The influence of W content on the ablation-resistant and thermal shock properties of ZrC-W composite coatings was evaluated using a plasma flame. The results show that the ZrC-W composite coatings had typically lamellar microstructure, which was mainly made up of cubic ZrC, cubic W and a small amount of tetragonal ZrO2. The ZrC-W coatings had improved ablation resistant and thermal shock properties compared with those of the pure ZrC coating. It was supposed that the improved density, thermal conductivity and toughness of the composite coatings contributed to this phenomenon.


2015 ◽  
Vol 44 (10) ◽  
pp. 2396-2400 ◽  
Author(s):  
Gao Peihu ◽  
Li Jianping ◽  
Yang Zhong ◽  
Guo Yongchun ◽  
Wang Yanrong

Author(s):  
A.Ph. Ilyuschenko ◽  
N.I. Shipica ◽  
P.A. Vityaz ◽  
A.A. Yerstak ◽  
A.Y. Beliaev

Abstract This paper presents the results of a study on the wear resistance of plasma spray coatings made from Cr2O3-TiO2-CaF2 powders. The composite powders used were produced by self-propagating high temperature synthesis. They were then applied under various conditions in order to optimize the material system, spray process, and application procedures. Based on the results of microstructural examination and wear testing, the thermally sprayed composite coatings have excellent wear resistance, good adhesion, and are self-lubricating at high temperatures.


Sign in / Sign up

Export Citation Format

Share Document