The Design and Analysis of Polymer Cosmetic Micro-Needle

2012 ◽  
Vol 562-564 ◽  
pp. 451-454
Author(s):  
Abrahem.M.M. Hedra ◽  
Heng Zhi Cai ◽  
Ling Xue ◽  
Zhen Feng Hao ◽  
Xin Liang Wang ◽  
...  

At present, most of cosmetic micro-needle in the market is made of biomedical stainless steels, but the processing technology is complicated and the piece-production cost is high. Micro injection molding technology can make the complicated polymer micro-needle in one cycle with the help of the rich experience accumulated in this area. And the method is suitable for mass production. This paper introduces the design of a new type of cosmetic micro-needle with polymer, its number simulation with injection molding software mold flow and the strength simulation.

Micromachines ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 253 ◽  
Author(s):  
Yanjun Lu ◽  
Fumin Chen ◽  
Xiaoyu Wu ◽  
Chaolan Zhou ◽  
Yan Lou ◽  
...  

Precise micro-grinding machining was proposed to fabricate regular and controllable micro-grooved array structures on the surface of mold cores to realize the mass production and manufacturing of micro-structured polymer components by micro injection molding in this paper. First, the 3D topographies and section profiles of micro-ground mold cores and micro-formed polymers with different micro-structure parameters were presented. Then, the surface roughness of mold cores and polymers were compared. Next, the relationships between machining accuracy of mold core ground by micro-grinding and filling rates of micro-structured polymer formed by micro injection molding were investigated. Finally, the influences of micro injection molding parameters on the filling rate of micro-structures polymer were investigated. It is shown that the micro-structured polymer can be effectively and rapidly fabricated using the proposed method. The experimental results indicate the highest form accuracy of the micro-grooved mold core and the filling rate of micro-structured polymer can reach to 4.05 µm and 99.30%, respectively. It is found that the filling rate of the micro-structured polymer roughly increased with increasing machining accuracy of the mold core. The injection pressure had the greatest influence on the filling rate of the injection formed polymer, while the melt temperature had the least influence.


2008 ◽  
Vol 14 (9-11) ◽  
pp. 1507-1514 ◽  
Author(s):  
Takanori Katoh ◽  
Ryuichi Tokuno ◽  
Yanping Zhang ◽  
Masahiro Abe ◽  
Katsumi Akita ◽  
...  

2013 ◽  
Vol 734-737 ◽  
pp. 1110-1113
Author(s):  
Xiang Wen Lv ◽  
Xiong Tong ◽  
Xian Xie ◽  
Qing Hua Zhou ◽  
Yong Cheng Zhou ◽  
...  

A beneficiation experimental research is conducted on sulfur-containing 18.17% multi-metals tailings. On the basis of the traditional mineral processing technology, it introduces X-51, a new type sulfide mineral activator, to instead of copper sulfate. Eventually, the sulfur concentrate grade is 47.51% with the recovery of 92.11%. The effectively recovery of the sulfur is creating good economic benefits and environmental benefit.


2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Seong Ying Choi ◽  
Nan Zhang ◽  
J. P. Toner ◽  
G. Dunne ◽  
Michael D. Gilchrist

Vacuum venting is a method proposed to improve feature replication in microparts that are fabricated using micro-injection molding (MIM). A qualitative and quantitative study has been carried out to investigate the effect of vacuum venting on the nano/microfeature replication in MIM. Anodized aluminum oxide (AAO) containing nanofeatures and a bulk metallic glass (BMG) tool mold containing microfeatures were used as mold inserts. The effect of vacuum pressure at constant vacuum time, and of vacuum time at constant vacuum pressure on the replication of these features is investigated. It is found that vacuum venting qualitatively enhances the nanoscale feature definition as well as increases the area of feature replication. In the quantitative study, higher aspect ratio (AR) features can be replicated more effectively using vacuum venting. Increasing both vacuum pressure and vacuum time are found to improve the depth of replication, with the vacuum pressure having more influence. Feature orientation and final sample shape could affect the absolute depth of replication of a particular feature within the sample.


2006 ◽  
Vol 505-507 ◽  
pp. 229-234 ◽  
Author(s):  
Yung Kang Shen ◽  
H.J. Chang ◽  
C.T. Lin

The purpose of this paper presents the optical properties of microstructure of lightguiding plate for micro injection molding (MIM) and micro injection-compression molding (MICM). The lightguiding plate is applied on LCD of two inch of digital camera. Its radius of microstructure is from 100μm to 300μm by linearity expansion. The material of lightguiding plate uses the PMMA plastic. This paper uses the luminance distribution to make a comparison between MIM and MICM for the optical properties of lightguiding plate. The important parameters of process for optical properties are the mold temperature, melt temperature and packing pressure in micro injection molding. The important parameters of process for optical properties are the compression distance, mold temperature and compression speed in micro injection-compression molding. The process of micro injection-compression molding is better than micro injection molding for optical properties.


1999 ◽  
Author(s):  
Armen L. Airikyan

Abstract Everyday practice of cutting process planning requires reliable chipbreacking and this is particularly true when machining difficult-ti-machine materials as austenitic stainless steels. The use of pressed-groove type of chipbreakers prove to provide a partly solution of the problem since their utilization unavoidably leads to increasing cutting force and chipping of the cutting edge. The use of clapped-on chipbreaker seems to solve these problems. However new design and application problem arise. This paper deals with the analysis of these problema and offers a methodology for it resolving. As a result, a new type of a clamped-on chipbreaker has been developed.


Sign in / Sign up

Export Citation Format

Share Document