Effect of TiO2 Nanofiller on Nanocomposited PMMA/TiO2 Thin Film

2012 ◽  
Vol 576 ◽  
pp. 417-420 ◽  
Author(s):  
N.N. Hafizah ◽  
Ismail Lyly Nyl ◽  
M.Z. Musa ◽  
Mohamad Rusop Mahmood

In this study, PMMA/TiO2 nanocomposite thin films were prepared by using sonication spin coating technique. The PMMA and TiO2 solution were mixed together and sonicated for 1h to confirm the homogeneity of the sample. The thin films obtained were then measured using atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and Fourier transform infrared (FTIR). FESEM micrograph reveals that the uniformity increases with the increase of TiO2 weight percentage.

2008 ◽  
Vol 8 (4) ◽  
pp. 1757-1761 ◽  
Author(s):  
Ajeet Kaushik ◽  
Jitendra Kumar ◽  
M. K. Tiwari ◽  
R. Khan ◽  
B. D. Malhotra ◽  
...  

Polyaniline (PANI)–ZnO nanocomposite thin film has been successfully fabricated on glass substrates by using vacuum deposition technique. The as-grown PANI–ZnO nanocomposite thin films have been characterized using X-ray diffraction, Scanning Electron Microscopy, Atomic Force Microscopy, UV-visible spectrophotometer and Fourier Transform Infrared (FTIR) spectroscopy, respectively. X-ray diffraction of as-grown film shows the reflection of ZnO nanoparticles along with a broad peak of PANI. The surface morphology of nanocomposite films has been investigated using scanning electron microscopy and atomic force microscopy. The hypsochromic shift of the UV absorption band corresponding to π–π* transition in polymeric chain of PANI and a band at 504 cm –1 due to ZnO nanoparticles has been observed in the FTIR spectra. The hydrogen bonding between the imine group of PANI and ZnO nanoparticle has been confirmed from the presence of the absorbance band at 1151 cm–1 in the FTIR spectra of the nanocomposite thin films.


2013 ◽  
Vol 667 ◽  
pp. 206-212 ◽  
Author(s):  
I. Saurdi ◽  
Mohamad Hafiz Mamat ◽  
Mohamad Rusop

In this study, the ZnO/TiO2 nanocomposite thin films were prepared by RF Magnetron co-sputtering ZnO and TiO2 targets at different deposition times from 30-75 minutes. The electrical and structural properties ZnO/TiO2 nanocomposite thin films were characterized by I-V measurement, atomic force microscopy (AFM) and field emission scanning electron microscopy (FE-SEM). The electrical characteristics of nanocomposite films revealed that the conductivity of thin films increases as the thickness increase due to the improvement in surface contact between particles as well as photocatalytic activity. High conductivity at 1.67x10-4 S/cm and lowest resistivity about 5.14x104 Ω/cm were obtained for 75 minutes deposition time. Atomic force microscopy (AFM) showed particle size of ZnO/TiO2 thin films varied from 27nm to 51nm with an increasing in deposition time with granular shapes structures were observed from field emission scanning electron microscopy (FE-SEM).


2013 ◽  
Vol 667 ◽  
pp. 495-500 ◽  
Author(s):  
I. Saurdi ◽  
Mohamad Hafiz Mamat ◽  
Mohamad Rusop

In this work, ZnO thin films were deposited by RF Magnetron sputtering at different substrate temperatures in the range of 100-400oC on glass substrate. The thin films were characterized using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and I-V measurement, for morphology and electrical properties study. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) were used to study the structural and morphology of the thin films. The particle size varied from 41nm to 146nm showing that the nucleation of ZnO thin films as the substrate temperatures increased. Higher particle size was observed as the substrate temperatures increased up to 400oC as well as high conductivity of thin films at 400oC.


Author(s):  
Carol Trager-Cowan ◽  
P. G. Middleton ◽  
K. P. O'Donnell

In this paper we compare gallium nitride (GaN) films grown by molecular beam epitaxy on sapphire (Al2O3), gallium arsenide (GaAs (111)B) and lithium gallate (LiGaO2) substrates. Atomic force microscopy, scanning electron microscopy, cathodoluminescence imaging and cathodoluminescence spectroscopy are used to characterise the films. From growth runs carried out to date, GaN films on GaAs substrates exhibit the best surface uniformity and the cleanest luminescence.


2015 ◽  
Vol 814 ◽  
pp. 39-43 ◽  
Author(s):  
Lei Lei Chen ◽  
Hong Mei Deng ◽  
Ke Zhi Zhang ◽  
Ling Huang ◽  
Jian Liu ◽  
...  

Cu2MnSnS4 thin film was successfully prepared by a sol-gel technique on soda lime glass substrate from metal salts and thiourea. The structural and morphological properties of the fabricated film were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and atomic force microscopy. The combination of the X-ray diffraction results and Raman spectroscopy reveal that this obtained layer is composed by Cu2MnSnS4 phase and has a stannite structure with preferential orientation along the (112) direction. The scanning electron microscopy and atomic force microscopy results show that the synthesized thin film is smooth and compact without any visible cracks or pores. The band gap of the Cu2MnSnS4 thin film is about 1.29 eV determined by the UV-vis-NIR absorption spectra measurement, which indicates it has potential applications in solar cells.


2021 ◽  
Vol 11 ◽  
pp. 184798042110113
Author(s):  
Huda Abdullah ◽  
Seri Mastura Mustaza ◽  
Siti Khairani Bejo ◽  
Iskandar Yahya ◽  
Noorfazila Kamal ◽  
...  

Leptospirosis disease was caused by rat urine which contains the genus Leptospira bacteria. In this study, the fabrication of Pd-Fe-doped polyaniline nanocomposite thin films for the determination of the genus Leptospira bacteria thin films has been investigated. Pd-Fe-doped polyaniline nanocomposite thin films were fabricated by sol–gel spin coating method. The electrode sensors were immersed in the Leptospira solution. The resulting materials were investigated using field-emission scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and current–voltage measurement. The atomic force microscopy images show the specific morphology films’ structure for Leptospira detection, whereas the field-emission scanning electron microscopy image shows the irregularity of clump nanoparticles in thin film surfaces. Transmission electron microscopy result shows that metal alloy (Fe-Pd) embedded in the polymer matrix. Current–voltage measurement with and without incubation of the thin film into Leptospira solution was done to show the relationship between concentration bacteria versus current. The result shows that polyaniline-Fe0.4-Pd0.6 nanocomposite thin film has higher sensitivity in detecting Leptospira, where it has performed with the highest percentage of the sensitivity of 16.9%. Besides that, selectivity tests were conducted to distinguish the existence of Leptospira, Pseudomonas aeruginosa, and Staphylococcus aureus bacteria. These results confirm the potentials of polyaniline metal alloys’ nanocomposite thin films to be used for Leptospira bacteria detection in water.


2013 ◽  
Vol 743-744 ◽  
pp. 372-376 ◽  
Author(s):  
Huan Yang ◽  
Kai Bo Shen ◽  
Jian Liu ◽  
Wei Wang ◽  
Yue Huang ◽  
...  

Unlike photo-induced super-hydrophilic inorganic thin films, non-photoinduced innate super-hydrophilic TiO2/SiO2 thin films have been successfully prepared in this work. SiO2/TiO2 thin films were prepared by solgel method via adding hydrophilic fumed silica to TiO2 sol and characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM) and contact angle meter. The results show that the super-hydrophilicity of the as-prepared thin films can maintain for one month without light irradiation, and the thin films have excellent antifogging property as well.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 652
Author(s):  
Divine Sebastian ◽  
Chun-Wei Yao ◽  
Lutfun Nipa ◽  
Ian Lian ◽  
Gary Twu

In this work, a mechanically durable anticorrosion superhydrophobic coating is developed using a nanocomposite coating solution composed of silica nanoparticles and epoxy resin. The nanocomposite coating developed was tested for its superhydrophobic behavior using goniometry; surface morphology using scanning electron microscopy and atomic force microscopy; elemental composition using energy dispersive X-ray spectroscopy; corrosion resistance using atomic force microscopy; and potentiodynamic polarization measurements. The nanocomposite coating possesses hierarchical micro/nanostructures, according to the scanning electron microscopy images, and the presence of such structures was further confirmed by the atomic force microscopy images. The developed nanocomposite coating was found to be highly superhydrophobic as well as corrosion resistant, according to the results from static contact angle measurement and potentiodynamic polarization measurement, respectively. The abrasion resistance and mechanical durability of the nanocomposite coating were studied by abrasion tests, and the mechanical properties such as reduced modulus and Berkovich hardness were evaluated with the aid of nanoindentation tests.


Sign in / Sign up

Export Citation Format

Share Document