Cracking Simulation of Asphalt Mixtures Using a Finite Element Micromechanical Model

2012 ◽  
Vol 598 ◽  
pp. 477-483
Author(s):  
Jing Hui Liu

Cracking in the surface layer of asphalt pavement has been shown to be a major source of distress in roadways. Asphalt mixture is typically a heterogeneous material composed of aggregates, binder and air voids. Previous cracking studies have not considered the material heterogeneity. Digital Image Processing techniques is a powerful tool to describe the microstructure of the material. A micromechanical cohesive zone model that introduces ductility at the crack tip has been used to simulate the cracking of asphalt mixtures. ABAQUS software is a convenient finite element method to conduct simulations of particular laboratory specimens such as Indirect Tensile Tests(IDT) considering the micromechanical model. Simulation results of the IDT compared favorably with experimental results. Even though this study presented a attempt of a numerical simulation of a simple IDT test, the theory and methods adopted by the study can be applied to the fatigue damage study under the complicated loading considering the material heterogeneity, and then would effectively allow researchers link the micro-scale damage observed on the local scale with the real pavements fail on the global scale.

Author(s):  
Qiuyi Shen ◽  
Zhenghao Zhu ◽  
Yi Liu

A three-dimensional finite element model for scarf-repaired composite laminate was established on continuum damage model to predict the load capacity under tensile loading. The mixed-mode cohesive zone model was adopted to the debonding behavior analysis of adhesive. Damage condition and failure of laminates and adhesive were subsequently addressed. A three-dimensional bilinear constitutive model was developed for composite materials based on damage mechanics and applied to damage evolution and loading capacity analyses by quantifying damage level through damage state variables. The numerical analyses were implemented with ABAQUS finite element analysis by coding the constitutive model into material subroutine VUMAT. Good agreement between the numerical and experimental results shows the accuracy and adaptability of the model.


2020 ◽  
Vol 57 (6A) ◽  
pp. 61
Author(s):  
Hoa Cong Vu

In this paper, a damage model using cohesive damage zone for the simulation of progressive delamination under variable mode is presented. The constitutive relations, based on liner softening law, are using for formulation of the delamination onset and propagation. The implementation of the cohesive elements is described, along with instructions on how to incorporate the elements into a finite element mesh. The model is implemented in a finite element formulation in ABAQUS. The numerical results given by the model are compare with experimental data


2011 ◽  
Vol 243-249 ◽  
pp. 4112-4118
Author(s):  
Min Jiang Zhang ◽  
Gang Chen ◽  
Li Xia Hou ◽  
Li Ping Zhang

Based on the viscoelasticity theory and the data of creep test, Burgers model was established, which was used to study the viscoelastic property of SBR asphalt mixtures, and the viscoelastic constitutive relation was obtained. Using the finite element method, the temperature stresses field was calculated under the environmental conditions and the thermal stresses of SBR modified asphalt pavement was given at the last part of this paper. The study indicated that SBR modified asphalt mixtures have the advantage over common asphalt mixture in low-temperature performance.


Author(s):  
Chris Bassindale ◽  
Xin Wang ◽  
William R. Tyson ◽  
Su Xu

Abstract In this work, the cohesive zone model (CZM) was used to examine the transferability of the crack tip opening angle (CTOA) from small-scale to full-scale geometries. The pipe steel STPG370 was modeled. A drop-weight tear test (DWTT) model and pipe model were studied using the finite element code ABAQUS 2017x. The cohesive zone model was used to simulate crack propagation in 3D. The CZM parameters were calibrated based on matching the surface CTOA measured from a DWTT finite element model to the surface CTOA measured from the experimental DWTT specimen. The mid-thickness CTOA of the DWTT model was in good agreement with the experimental value determined from E3039 and the University of Tokyo group’s load-displacement data. The CZM parameters were then applied to the pipe model. The internal pressure distribution and decay during the pipe fracture process was modeled using the experimental data and implemented through a user-subroutine (VDLOAD). The mid-thickness CTOA from the DWTT model was similar to the mid-thickness CTOA from the pipe model. The average surface CTOA of the pipe model was in good agreement with the average experimental value. The results give confidence in the transferability of the CTOA between small-scale specimens and full-scale pipe.


2019 ◽  
Vol 964 ◽  
pp. 257-262
Author(s):  
Victor D. Waas ◽  
Mas Irfan P. Hidayat ◽  
Lukman Noerochim

Delamination or interlaminar fracture often occurs in composite laminate due to several factors such as high interlaminar stress, stress concentration, impact stress as well as imperfections in manufacturing processes. In this study, finite element (FE) simulation of mode I delamination in double cantilever beam (DCB) specimen of carbon fiber/epoxy laminate HTA/6376C is investigated using cohesive zone model (CZM). 3D geometry of DCB specimen is developed in ANSYS Mechanical software and 8-node interface elements with bi-linear formulation are employed to connect the upper and lower parts of DCB. Effect of variation of number of elements on the laminate critical force is particularly examined. The mesh variation includes coarse, fine, and finest mesh. Simulation results show that the finest mesh needs to be employed to produce an accurate assessment of laminate critical force, which is compared with the one obtained from exact solution. This study hence addresses suitable number of elements as a reference to be used for 3D simulation of delamination progress in the composite laminate, which is less explored in existing studies of delamination of composites so far.


2019 ◽  
Vol 54 (7-8) ◽  
pp. 364-378
Author(s):  
Lorenzo García-Guzmán ◽  
Luis Távara ◽  
José Reinoso ◽  
Federico París

In the present investigation, a J-Integral formulation for non-flat crack paths, in the framework of the cohesive zone model, is developed. The formulation allows fracture energy properties in a direction that is not necessarily coplanar with the global crack advance to be analysed. Specifically, the effective fracture energy, [Formula: see text], has been examined based on the horizontal projection of the crack advance, [Formula: see text] (also called effective crack length). The use of [Formula: see text] is convenient in several situations as the case of patterned interfaces in adhesive joints. Finite-element analysis of double cantilever beam specimens including a trapezoidal patterned interface were employed to check the accuracy of this new definition of the contour integral. Post-process of the finite-element model, including those variables involved in the fracture energy calculation, is discussed together with some considerations that distinguish the energy evaluation procedure for flat profiles from structured designs. Finally, [Formula: see text] values obtained using the modified J-Integral formulation are compared with [Formula: see text] values obtained from the load–displacement curve method for comparison purposes.


2012 ◽  
Vol 193-194 ◽  
pp. 1454-1460
Author(s):  
Ying Mei Yin

In order to simulate reflective cracking of asphalt overlays or semi-rigid asphalt pavements in lab and evaluate the reflective crack resistance performance of with and without interlayer, a finite element analysis model based on the asphalt pavement, of which the semi-rigid base has cracked, is conducted and established through some basic assumptions in this paper. According to the results of pavement mechanical analysis and some literatures review, a laboratory reflective cracking simulation model was designed to compare the resistances of reflective cracking of different mixture samples. In order to compare the reflective cracking of different test samples, a dense grade asphalt mixture AC-20I with and without interlayer were used in the test. The results shows that asphalt mixture beams containing geotechnical fabrics can effectively delay the appearance of the reflective cracking at the bottom of the asphalt mixture beam and evidently reduce the propagation speed of reflective cracking while the beams containing geogrid can also hold back reflective cracking to a certain extent, but not as much as geotechnical fabrics did. It was proved that the model designed through finite element analysis (FEA) can simulate the reflective cracking caused by load and evaluate the reflective cracking resistance performance of different asphalt mixtures well and asphalt mixtures with fabrics can mitigate and delay reflective cracking effectively.


Author(s):  
Xiangyang Dong ◽  
Yung C. Shin

Alumina ceramics, due to their excellent properties of high hardness, corrosion resistance, and low thermal expansion coefficient, are important industrial materials with a wide range of applications, but these materials also present difficulty in machining with low material removal rates and high tool wear. This study is concerned with laser-assisted machining (LAM) of high weight percentage of alumina ceramics to improve the machinability by a single point cutting tool while reducing the cutting forces. A multiscale model is developed for simulating the machining of alumina ceramics. In the polycrystalline form, the properties of alumina ceramics are strongly related to the glass interface existing in their microstructure, particularly at high temperatures. The interface is characterized by a cohesive zone model (CZM) with the traction–separation law while the alumina grains are modeled as continuum elements with isotropic properties separated by the interface. Bulk deformation and brittle failure are considered for the alumina grains. Molecular dynamics (MD) simulations are carried out to obtain the atomistic structures and parameterize traction–separation laws for the interfaces of different compositions of alumina ceramics at high temperatures. The generated parameterized traction–separation laws are then incorporated into a finite element model in Abaqus to simulate the intergranular cracks. For validation purposes, simulated results of the multiscale approach are compared with the experimental measurements of the cutting forces. The model is successful in predicting cutting forces with respect to the different weight percentage and composition of alumina ceramics at high temperatures in LAM processes.


Sign in / Sign up

Export Citation Format

Share Document