scholarly journals COMPUTATION FOR THE DELAMINATION IN THE LAMINATE COMPOSITE MATERIAL USING A COHESIVE ZONE MODEL BY ABAQUS

2020 ◽  
Vol 57 (6A) ◽  
pp. 61
Author(s):  
Hoa Cong Vu

In this paper, a damage model using cohesive damage zone for the simulation of progressive delamination under variable mode is presented. The constitutive relations, based on liner softening law, are using for formulation of the delamination onset and propagation. The implementation of the cohesive elements is described, along with instructions on how to incorporate the elements into a finite element mesh. The model is implemented in a finite element formulation in ABAQUS. The numerical results given by the model are compare with experimental data

2020 ◽  
Vol 57 (6A) ◽  
pp. 61
Author(s):  
Hoa Cong Vu

In this paper, a damage model using cohesive damage zone for the simulation of progressive delamination under variable mode is presented. The constitutive relations, based on liner softening law, are using for formulation of the delamination onset and propagation. The implementation of the cohesive elements is described, along with instructions on how to incorporate the elements into a finite element mesh. The model is implemented in a finite element formulation in ABAQUS. The numerical results given by the model are compare with experimental data


Author(s):  
Lisheng Liu ◽  
Shaofan Li

In this work, an atomistic-based finite temperature multiscale interphase finite element method has been developed, and it has been applied to study fracture process of metallic materials at finite temperature. The coupled thermomechanical finite element formulation is derived based on continuum thermodynamics principles. The mesoscale constitutive relations and thermal conduction properties of materials are enriched by atomistic information of the underneath lattice microstructure in both bulk elements and interphase cohesive zone. This is accomplished by employing the Cauchy–Born rule, harmonic approximation, and colloidal crystal approximation. A main advantage of the proposed approach is its ability to capture the thermal conduction inside the material interface. The multiscale finite element procedure is performed to simulate an engineering nickel plate specimen with weak interfaces under uni-axial stretch. The simulation results indicate that the crack propagation is slowed down by thermal expansion, and a cooling region is found in the front of crack tip. These phenomena agree with related experimental results. The effect of different loading rates on fracture is also investigated.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4314
Author(s):  
Jingwei Ying ◽  
Jin Guo

Two-dimensional meso-scale finite element models with real aggregates are developed using images obtained by digital image processing to simulate crack propagation processes in concrete under uniaxial compression loading. The finite element model is regarded as a three-phase composite material composed of aggregate, mortar matrix and interface transition zone (ITZ). Cohesive elements with traction–separation laws are used to simulate complex nonlinear fracture. During the experiment, digital image correlation (DIC) was used to obtain the deformation and cracks of the specimens at different loading stages. The concept of strain ratio is proposed to describe the effectiveness of simulation. Results show that the numerical strain ratio curve and stress–strain curves are both in good agreement with experimental data. The consistency between the cracks obtained by simulation and those obtained by DIC shows the good performance of cohesive elements as well as the effectiveness of simulation. In summary, the model is able to provide accurate predictions of the whole fracture process in concrete under uniaxial compression loading.


2014 ◽  
Vol 891-892 ◽  
pp. 777-783 ◽  
Author(s):  
Sarmediran Silitonga ◽  
Johan Maljaars ◽  
Frans Soetens ◽  
Hubertus H. Snijder

In this work, a numerical method is pursued based on a cohesive zone model (CZM). The method is aimed at simulating fatigue crack growth as well as crack growth retardation due to an overload. In this cohesive zone model, the degradation of the material strength is represented by a variation of the cohesive traction with respect to separation of the cohesive surfaces. Simulation of crack propagation under cyclic loads is implemented by introducing a damage mechanism into the cohesive zone. Crack propagation is represented in the process zone (cohesive zone in front of crack-tip) by deterioration of the cohesive strength due to damage development in the cohesive element. Damage accumulation during loading is based on the displacements in the cohesive zone. A finite element model of a compact tension (CT) specimen subjected to a constant amplitude loading with an overload is developed. The cohesive elements are placed in front of the crack-tip along a pre-defined crack path. The simulation is performed in the finite element code Abaqus. The cohesive elements behavior is described using the user element subroutine UEL. The new damage evolution function used in this work provides a good agreement between simulation results and experimental data.


Author(s):  
Javed Iqbal

Abstract: This study describes the development of Continuum and Discrete Damage Models in commercial finite element code Abaqus/Standard. The Concrete Damage Plasticity Model has been simulated, analysed, and compared the result with the experimental data. For verification, the Cohesive Zone Model has been simulated and analysed. Furthermore, the Extended Finite Element Model and concrete damage model are discussed and compared. The continuum damage model tends to simulate the complex fracture behaviour like crack initiation and propagation along with the invariance of the result, while the cohesive zone model can simulate and propagate the crack as well as the good agreement of the result. Further work in the proposed numerical models can better simulate the fracture behaviour of asphalt concrete in near future. Keywords: Model, Concrete, Cohesive Zone, Finite element, Abaqus.


2005 ◽  
Vol 297-300 ◽  
pp. 1019-1024
Author(s):  
Mitsugu Todo ◽  
Yoshihiro Fukuya ◽  
Seiya Hagihara ◽  
Kazuo Arakawa

Microscopic studies on the toughening mechanism of rubber-toughened PMMA (RTPMMA) were carried out using a polarizing optical microscope (POM) and a transmission electron microscope (TEM). POM result showed that in a typical RT-PMMA, a damage zone was developed in the vicinity of crack-tip, and therefore, it was considered that energy dissipation due to the damage zone development was the primary toughening mechanism. TEM result exhibited that the damage zone was a crowd of micro-crazes generated around rubber particles in the vicinity of notch-tip. Finite element analysis was then performed to simulate such damage formations in crack-tip region. Macro-scale and micro-scale models were developed to simulate damage zone formation and micro-crazing, respectively, with use of a damage model. It was shown that the damage model introduced was successfully applied to predict such kind of macro-damage and micro-craze formations.


Author(s):  
Qiuyi Shen ◽  
Zhenghao Zhu ◽  
Yi Liu

A three-dimensional finite element model for scarf-repaired composite laminate was established on continuum damage model to predict the load capacity under tensile loading. The mixed-mode cohesive zone model was adopted to the debonding behavior analysis of adhesive. Damage condition and failure of laminates and adhesive were subsequently addressed. A three-dimensional bilinear constitutive model was developed for composite materials based on damage mechanics and applied to damage evolution and loading capacity analyses by quantifying damage level through damage state variables. The numerical analyses were implemented with ABAQUS finite element analysis by coding the constitutive model into material subroutine VUMAT. Good agreement between the numerical and experimental results shows the accuracy and adaptability of the model.


Sign in / Sign up

Export Citation Format

Share Document