Field Experimental Study on Saline and Alkaline Soil Amelioration through Combining Chemical Method and Under-Mulch Drip Irrigation

2012 ◽  
Vol 599 ◽  
pp. 832-837
Author(s):  
Chun Xia Wang ◽  
Quan Jiu Wang ◽  
Zhuang Liang

Chemistry amelioration measure is a means of regulating soil water and salt movement, the paper introduced the method of combined the under-mulch drip irrigation with applying of chemicals, such as PAM, Handilong and Gypsum. The Field experimental results indicate that the surface soil bulk density reduced degree for applying chemistry matters is higher than without applying chemical farmland (as comparison treatment), the reduced rate shows to reduce one after the other increase with applying increasing. The holding water capacity for applying chemicals is higher than comparison treatment except the treatments for applying Handilong (3750Kg•ha-1) and Gypsum (5340Kg•ha-1), and the holding water effect applying PAM is the highest and the lowest for Gypsum. Applying chemicals also increases the soil water infiltration depth, and the soil water is held within 0-60cm soil layers for applying chemical soils and 0-40cm for comparison treatment. The desalinization rate is lowest for comparison treatment, the desalinization effect is biggish in upper initial soil salt content, and the highest for applying Handilong and the lowest for Gypsum. The output is lowest in comparison treatment, it reduces for applying PAM as applying increased, but to reduce one after the other increase with applying Handilong and Gypsum increasing.

Soil Research ◽  
2011 ◽  
Vol 49 (2) ◽  
pp. 135 ◽  
Author(s):  
M. A. Hamza ◽  
S. S. Al-Adawi ◽  
K. A. Al-Hinai

Reducing soil compaction is now an important issue in agriculture due to intensive use of farm machinery in different farm operations. This experiment was designed to study the influence of combinations of external load and soil water on soil compaction. Four soil water levels were combined with four external loads as follows: soil water—air-dry, 50% of field capacity, field capacity, and saturation; external load using different-sized tractors—no load (0 kg), small tractor (2638 kg), medium tractor (3912 kg), and large tractor (6964 kg). Soil bulk density, soil strength, and soil water infiltration rate were measured at 0–100, 100–200, and 200–300 mm soil depths. The 16 treatments were set up in a randomised block design with three replications. Combined increases in soil water and external load increased soil compaction, as indicated by increasing soil bulk density and soil strength and decreasing soil water infiltration rate. There was no significant interaction between soil water and external load for bulk density at all soil depths, but the interaction was significant for soil strength and infiltration rates at all soil depths. The ratio between the weight of the external load and the surface area of contact between the external load and the ground was important in determining the degree of surface soil compaction. Least compaction was produced by the medium tractor because it had the highest tyre/ground surface area contact. In general, the effects of soil water and external load on increasing soil bulk density and soil strength were greater in the topsoil than the subsoil.


2012 ◽  
Vol 8 (1) ◽  
pp. 37-48
Author(s):  
S. Chehaibi ◽  
K. Abrougui ◽  
F. Haouala

The effects of mechanical perforation densities by extracting soil cores through an aerator Vertidrain with a working width of 1.6 m and equipped with hollow tines spaced of 65 mm, were studied on a sandy soil of a grassy sward in the Golf Course El Kantaoui in Sousse (Tunisia). The mechanical aeration was performed at two densities: 250 and 350 holes/m2. The cone penetration resistance and soil water infiltration were measured. These parameters were performed at initial state before aeration (E0) and then on the 10th, 20th and 30th day after aeration. These results showed that perforation density of 350 holes/m2 had a positive effect on the soil by reducing its cone resistance to penetration compared to the initial state (Rp = 14.8 daN/cm2). At 5 cm depth the decrease in resistance to penetration was 34% and 43% on the 10th and 20th day after aeration, respectively. However, on the 30th day after aeration the soil resistance to penetration tended to grow and its value compared to the initial state decreased only by 21 and 26%, respectively, at 5 and 15 cm of depth only by 10% and 9% with 250 holes/m2 density. The soil water infiltration made a good improvement after aeration compared to the initial state. This parameter increased from 4.8 cm/h to 8.3, 10.9 and 13.1 cm/h with 250 holes/m2 density and to 10, 12.9 and 14.8 cm/h with 350 holes/m2 density on the 10th, 20th and 30th day following the aeration.


2015 ◽  
Vol 44 (2) ◽  
pp. 134-139 ◽  
Author(s):  
A A Romero-López ◽  
E Rodríguez-Palacios ◽  
E Alarcón-Gutiérrez ◽  
D Geissert ◽  
I Barois

2017 ◽  
Vol 14 (6) ◽  
pp. 1076-1085 ◽  
Author(s):  
Dong-bing Cheng ◽  
Lin-yao Dong ◽  
Feng Qian ◽  
Bei Sun

2021 ◽  
Vol 299 ◽  
pp. 113672
Author(s):  
Chunfeng Chen ◽  
Xin Zou ◽  
Ashutosh Kumar Singh ◽  
Xiai Zhu ◽  
Wanjun Zhang ◽  
...  

2019 ◽  
Vol 568 ◽  
pp. 492-500 ◽  
Author(s):  
Wuquan Ding ◽  
Xinmin Liu ◽  
Feinan Hu ◽  
Hualing Zhu ◽  
Yaxue Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document