Optimization Design of Forging Die for Supporting Bar Based on DEFORM-3D

2012 ◽  
Vol 602-604 ◽  
pp. 1869-1873
Author(s):  
Lei Fu ◽  
Li Lin

On the basis of analyzing the process of supporting bar forging conform, the 3D solid geometries modeling of billet and die were constructed by SOLIDWORKS software, the distributions of die stress and contact stress on the process of supporting bar forging conform were analyzed by using DEFORM-3D program. The working life of the die punch was assessed. The die structure was optimized based on the simulation results, and the forging defect of the improved work piece could be well controlled and the die working life was improved to about 10%.

2012 ◽  
Vol 501 ◽  
pp. 418-421
Author(s):  
Xiao Bin Li ◽  
Hai Ming Hu

By using DEFORM-3D to simulate the turing process of the tire active mold segment, the stress distribution, temperature distribution, strain distribution and cutting force transformation of turning tool and work-piece can be explored. The simulation results are helpful to configure the material and shape of the turning tools. Also the results play an important role in reducing development cost of the segment manufacturing technology and improving the accuracy and the lifetime of the mould segment.


2009 ◽  
Vol 628-629 ◽  
pp. 535-540 ◽  
Author(s):  
Wei Wei Wang ◽  
Jian Li Song ◽  
Fei Han ◽  
Shou Jing Luo

Numerical simulation and test forming of the isothermal precision forging of an impeller was carried out. The forming processes were simulated with DEFORM-3D to obtain the forming characteristics and metal flow pattern. It indicated that the impeller can be forged by the method of isothermal-forging, and the deforming process can be divided into 3 stages. The forming of blades was depended on the extrusion of materials. During the forming, uneven deformation was existed in the billet, especially in the field of the blade root. The forging load was increased rapidly during the later stage of the forming process, and the maximum forging load was about 2961kN. According to the simulations, the die structure and the billet dimension were determined, the forging die was designed and manufactured, and the precision forgings of the impeller were produced successfully. Both of the simulation and the test forming indicated that the impeller forging could be performed with the assembled structure die and the isothermal extruding forming style satisfactorily. The ideal parameters to produce the precision forgings of the impeller are: a forging temperature of 450°C and a punch speed of 1mm/s. Under these conditions, the forgings of the impeller can be produced with full blades, smooth outer surface and good flow line, which can meet the requirements of the precision forging of impellers.


2012 ◽  
Vol 201-202 ◽  
pp. 1088-1091
Author(s):  
Jun Fan ◽  
Lei Gang Wang

The filling capability is important for forging die design, which influences the quality and life of the die. To obtain the know-how of the deficiency for the filling capability, numerical simulation was performed to analyze the hot compression of Ti75 alloy with DEFORM-3D. In the simulation, the reducing height and work-piece dimensions remain the same. We obtained the results including the process of hot compression, the forming behavior of the work-piece and the effect of work-piece dimensions on the distribution of the stress and strain.


2011 ◽  
Vol 101-102 ◽  
pp. 240-244
Author(s):  
Jun Fan

The filling capability of forging die is important to design forging die and it exerts a decisive influence to the quality and life of die. Due to the deficiency of the filling capability, and taking Ti3Al alloy as the research object, at the same height of reducing, work-piece dimensions as the control objective, the finite element numerical simulation method was used to simulate the hot compression of Ti3Al alloy with DEFORM-3D. This test simulated the process of hot compression, analyzed the hot deforming behavior of the stuff and discussed the effect of work-piece dimension on the variety and distribution of stress and strain.


2011 ◽  
Vol 230-232 ◽  
pp. 352-356
Author(s):  
Wen Ke Liu ◽  
Kang Sheng Zhang ◽  
Zheng Huan Hu

Based on the rigid-plastic deformation finite element method and the heat transfer theories, the forming process of cross wedge rolling was simulated with the finite element software DEFORM-3D. The temperature field of the rolled piece during the forming process was analyzed. The results show that the temperature gradient in the outer of the work-piece is sometimes very large and temperature near the contact deformation zone is the lowest while temperature near the center of the rolled-piece keeps relatively stable and even rises slightly. Research results provide a basis for further study on metal flow and accurate shaping of work-piece during cross wedge rolling.


2011 ◽  
Vol 189-193 ◽  
pp. 1778-1781 ◽  
Author(s):  
Gui Hua Liu ◽  
Yong Qiang Guo ◽  
Zhi Jiang

By using Deform-3D software, the necking extrusion forming processes of integer trailer axle with two different heating means which are Uniform Heating (UH) method and Partly Heating (PH) method with temperature gradient are simulated. The influence of deformation parameters such as friction factor, necking coefficient, different temperature distribution of work-piece on the material flow features, stress and strain field, loading force and deformation process are analyzed in detail. According to the numerical simulation results, using PH method with temperature gradient can improve necking deformation during tube extrusion process.


2018 ◽  
Vol 175 ◽  
pp. 03048
Author(s):  
Yongliang Yuan

In order to investigate the performance of the mobile maintenance platform, Ansys Workbench was used to analyze the strength analysis of the mobile maintenance platform. The deformation, stress, and strain were obtained. The fatigue module was used to analyze the fatigue of the mobile maintenance platform and the fatigue life based on the cumulative fatigue damage theory. The simulation results show that the strength of the mobile maintenance platform is sufficient, and its lifetime is as high as 19.8 years. The mobile maintenance platform has a large space for optimization and this paper provides a basis for future structural optimization design.


2011 ◽  
Vol 63-64 ◽  
pp. 201-204 ◽  
Author(s):  
Zhi Wei Wang ◽  
Ling Qin Meng ◽  
Wen Si Hao ◽  
E Zhang

Tapered Roller Bearing can take huge radial load or two way axial load. It is widely used in over loading, steel rolling, metallurgy, etc. In this paper, according to the structural properties of Tapered Roller Bearing, we established an mathematical model to optimize the design of Tapered Roller Bearing. Based on the comparison of the result from our design and the traditional design of the Four Column Tapered Roller Bearing 3811/750/HC, the dynamic load increases 22% and the working life expectancy increases 85% by using our design. This fully shows the economical meaning of the optimization design, and it provides a practical method for the optimization design in future.


Sign in / Sign up

Export Citation Format

Share Document