Preparation and Electro-Catalytic Performance of Pt-Ag/C as Electro-Reduction Catalysts for H2O2

2012 ◽  
Vol 608-609 ◽  
pp. 870-874
Author(s):  
Zhang Fei Guo ◽  
Dan Zheng

Using impregnation-chemical reduction method, we prepared Pt/C and Pt-Ag/C nano-catalysts. Both of them are with the same platinum content. The composition of the two catalysts was analyzed by XRD technique. The electrochemical performance was studied by cyclic voltammetry and current-time curve. The results show that: the existence of Ag in the Pt-Ag/C catalyst makes Pt crystallinity decreased; compared with Pt/C, Pt-Ag/C has a higher reductive peak current. In addition, both catalysts show the excellent catalytic stability.

2019 ◽  
Vol 944 ◽  
pp. 671-677
Author(s):  
Jin Feng Leng ◽  
Kang Wang ◽  
Chang Peng Xia

In this work, the preparation of graphene by chemical oxidation reduction method and a series of chemical reactions to get graphene oxide, with the preparation of graphene composites by simply chemical reduction method for the preparation of palladium/graphene composites. Through the chemical reduction method, the small size of Pd nanoparticles is acquired by controlling the content of reducing agent. The Pd nanoparticles on graphene surface is 10nm size and evenly distributed. Pd2+ adsorption on graphene surface and in situ were partially reduced to Pd to Pd2+ nanoparticles by the reducibility of graphene. In the process, the graphene was reduced to graphene and the final compound was thinner and more transparent than the pre-experiment oxide. The oxygen-containing functional groups on the surface of the graphene have influence to the nucleation and growth of metal nanoparticles and KI can control the morphology and size of nanoparticles. The particle size and dispersion uniformity have great influence on the catalytic performance of composites, the smaller particles have better catalytic performance. Keywords:palladium, graphene composites, nanoparticles


2012 ◽  
Vol 550-553 ◽  
pp. 420-423 ◽  
Author(s):  
Qian Wen Dai ◽  
Zi Li Liu ◽  
Cui Xia Xu ◽  
Qi Gang Xie ◽  
Fan Zhang ◽  
...  

The Ni-Mo-P amorphous catalysts were prepared by chemical reduction method under different sonication conditions. The catalytic performance of the prepared catalysts in selective hydrogenation of nitrobenzene(NB) to aniline(AN) were characterized by XRD, BET, N2-adsorption, H2-TPR and H2-TPD. The results show that the introduction of ultrasonic can improve the dispersion of the active sites in the catalyst, the particle size of the catalyst is also smaller than the regular prepared Ni-Mo-P amorphous catalyst. And the influences of the sonication power and time on the catalysts were discussed and compared. The optimal sonication condition is 70 W within 25 min, its optimal reaction time is 150 min.


2011 ◽  
Vol 197-198 ◽  
pp. 967-971 ◽  
Author(s):  
Wen Liang Gao ◽  
Fang Li

Palladium-copper bimetallic catalysts supported over different supporters were prepared by chemical reduction method, and their catalytic performance was investigated with the hydrogenation of nitrate ions in drinking water under mild conditions. The results show that Pd-Cu/ZSM-5 bimetallic catalyst has the highest catalytic activity among all used catalysts. In addition, nitrate conversion influenced by metal content, metal molar ratio (Pd:Cu) and the addition of CO2 are also discussed. It is well established that the addition of CO2 has changed the reduction path of the intermediate nitrite, but is no influence on the steps of nitrate-to-nitrite reduction. In the end, the mechanism of catalytic nitrate reduction was discussed on the basis the literature results.


RSC Advances ◽  
2018 ◽  
Vol 8 (26) ◽  
pp. 14138-14143 ◽  
Author(s):  
Yanna Song ◽  
Jingcheng Sun ◽  
Yanru Zhang ◽  
Bingxin Wang ◽  
Qiang Li ◽  
...  

The urchin-like RuCu and hollow RuCuMo nanocrystals were synthesized by one-pot chemical reduction method. The formation process of these nanocrystals was traced by cyclic voltammetry.


Author(s):  
Umadevi M ◽  
Rani T ◽  
Balakrishnan T ◽  
Ramanibai R

Nanotechnology has great promise for improving the therapeutic potential of medicinal molecules and related agents. In this study, silver nanoparticles of different sizes were synthesized in an ultrasonic field using the chemical reduction method with sodium borohydride as a reducing agent. The size effect of silver nanoparticles on antimicrobial activity were tested against the microorganisms Staphylococcus aureus (MTCC No. 96), Bacillus subtilis (MTCC No. 441), Streptococcus mutans (MTCC No. 497), Escherichia coli (MTCC No. 739) and Pseudomonas aeruginosa (MTCC No. 1934). The results shows that B. subtilis, and E. coli were more sensitive to silver nanoparticles and its size, indicating the superior antimicrobial efficacy of silver nanoparticles. 


Author(s):  
Dung Chinh Trinh ◽  
Thi My Dung Dang ◽  
Kim Khanh Huynh ◽  
Eric Fribourg-Blanc ◽  
Mau Chien Dang

2020 ◽  
Author(s):  
Theertharaman G. ◽  
Nibin K. Mathew ◽  
Rohith K. Vinod ◽  
P. Saravanan ◽  
S. Balakumar

Sign in / Sign up

Export Citation Format

Share Document