Parametric Study of Cylinder Deactivation and Valve Deactivation for Unthrottled Operation

2012 ◽  
Vol 614-615 ◽  
pp. 525-528
Author(s):  
Ahmad Solehin Paimon ◽  
Wira Jazair ◽  
Srithar Rajoo

Cylinder deactivation (CDA) as well as valve deactivation (VDA) technologies provides big potentials to decrease fuel consumption and emission at part load operation for SI engine. In real driving situation, an internal combustion engine operates in transient operation where the load and speed varies continuously. This part load operation leads the engine to have poor fuel consumption and emission due to throttle pumping losses. This paper will investigate the further potential of both induction strategy, cylinder deactivation and valve deactivation in extending the fuel economy at part load.

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8151
Author(s):  
Andyn Omanovic ◽  
Norbert Zsiga ◽  
Patrik Soltic ◽  
Christopher Onder

The electric hybridization of vehicles with an internal combustion engine is an effective measure to reduce CO2 emissions. However, the identification of the dimension and the sufficient complexity of the powertrain parts such as the engine, electric machine, and battery is not trivial. This paper investigates the influence of the technological advancement of an internal combustion engine and the sizing of all propulsion components on the optimal degree of hybridization and the corresponding fuel consumption reduction. Thus, a turbocharged and a naturally aspirated engine are both modeled with the additional option of either a fixed camshaft or a fully variable valve train. All models are based on data obtained from measurements on engine test benches. We apply dynamic programming to find the globally optimal operating strategy for the driving cycle chosen. Depending on the engine type, a reduction in fuel consumption by up to 32% is achieved with a degree of hybridization of 45%. Depending on the degree of hybridization, a fully variable valve train reduces the fuel consumption additionally by up to 9% and advances the optimal degree of hybridization to 50%. Furthermore, a sufficiently high degree of hybridization renders the gearbox obsolete, which permits simpler vehicle concepts to be derived. A degree of hybridization of 65% is found to be fuel optimal for a vehicle with a fixed transmission ratio. Its fuel economy diverges less than 4% from the optimal fuel economy of a hybrid electric vehicle equipped with a gearbox.


2019 ◽  
Vol 11 (11) ◽  
pp. 168781401988625 ◽  
Author(s):  
Lijun Hao ◽  
Chunjie Wang ◽  
Hang Yin ◽  
Chunxiao Hao ◽  
Haohao Wang ◽  
...  

In order to estimate the light-duty vehicle fuel economy at high-altitude areas, the coast-down tests of a passenger car on level road were conducted at different elevations, and the coast-down resistance coefficients were calculated. Furthermore, a fuel economy model for a light-duty vehicle adopting backward simulation method was developed, and it mainly consists of vehicle dynamic model, internal combustion engine model, transmission model, and differential model. The internal combustion engine model consists of the brake-specific fuel consumption maps as functions of engine torque and engine speed, and the brake-specific fuel consumption map near sea level was constructed based on engine experimental data, and the brake-specific fuel consumption maps at high altitudes were calculated by GT-Power Modeling of the internal combustion engine. The fuel consumption rate was calculated from the brake-specific fuel consumption maps and brake power and used to calculate the fuel economy of the light-duty vehicle. The model predicted fuel consumption data met well with the test results, and the model prediction errors are within 5%.


2020 ◽  
Vol 210 ◽  
pp. 01005
Author(s):  
Alexander Maksimenko ◽  
Natalia Buryanova

The article examines the issue of the influence of a hydrocarbon fuel activator on the fuel consumption by the internal combustion engine when the activator is installed in the fuel system when the car is running. The analysis of the previously performed work was carried out, hereupon the installation of a hydrocarbon fuel activator was identified as the parameter influencing the fuel consumption of a vehicle. The indicators that require accounting the rate of fuel consumption when the hydrocarbon fuel activator is installed, have been determined.


Author(s):  
J.Ajay Paul ◽  
Sagar Chavan Vijay ◽  
U. Magarajan ◽  
R.Thundil Karuppa Raj

In this experiment the single cylinder air cooled engines was assumed to be a set of annular fins mounted on a cylinder. Numerical simulations were carried out to determine the heat transfer characteristics of different fin parameters namely, number of fins, fin thickness at varying air velocities. A cylinder with a single fin mounted on it was tested experimentally. The numerical simulation of the same setup was done using CFD. The results validated with close accuracy with the experimental results. Cylinders with fins of 4 mm and 6 mm thickness were simulated for 1, 3, 4 &6 fin configurations.


2015 ◽  
Vol 77 (8) ◽  
Author(s):  
S. F. Zainal Abidin ◽  
M. F. Muhamad Said ◽  
Z. Abdul Latiff ◽  
I. Zahari ◽  
M. Said

There are many technologies that being developed to increase the efficiency of internal combustion engines as well as reducing their fuel consumption.  In this paper, the main area of focus is on cylinder deactivation (CDA) technology. CDA is mostly being applied on multi cylinders engines. CDA has the advantage to improve fuel consumption by reducing pumping losses at part load engine conditions. Here, the application of CDA on 1.6L four cylinders gasoline engine is studied. One-dimensional (1D) engine modeling work is performed to investigate the effect of intake valve strategy on engine performance with CDA. 1D engine model is constructed based on the 1.6L actual engine geometries. The model is simulated at various engine speeds at full load conditions. The simulated results show that the constructed model is well correlated to measured data. This correlated model is then used to investigate the CDA application at part load conditions. Also, the effects on the in-cylinder combustion as well as pumping losses are presented. The study shows that the effect of intake valve strategy is very significant on engine performance. Pumping losses is found to be reduced, thus improve fuel consumption and engine efficiency.


2020 ◽  
Vol 17 ◽  
pp. 00078
Author(s):  
Dmitry Maryin ◽  
Andrei Glushchenko ◽  
Anton Khokhlov ◽  
Evgeny Proshkin ◽  
Rail Mustyakimov

To improve the power and fuel and economic performance of a gasoline internal combustion engine, it has been proposed to improve the insulating properties of the piston by forming a heat-insulating coating on the working surfaces of the piston head with a thickness of 25...30 μm using the microarc oxidation method. Comparative results of engine tests are carried out, which showed that an engine equipped with pistons with a heat-insulating coating on the working surfaces of the head increases power by 5.3 % and reduces hourly fuel consumption by 5.7 % compared to an engine equipped with standard pistons.


2008 ◽  
Vol 20 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Kouki Yamaji ◽  
◽  
Hirokazu Suzuki ◽  

With progress in internal combustion engine fuel economy, variable cylinder systems have attracted attention. We measured fuel consumption in cylinder cutoff by stopping the injector alone, collected data changing the location and number of cutoff cylinders and when varying the cutoff cylinder, and compared the difference in fuel cost reduction. A transistor is inserted serially into the injector control circuit of the electronic control unit (ECU). By controlling the transistor via microcomputer, the injector is turned on or off independently from ECU control in obtain cylinder cutoff. The amount of fuel consumption is measured using enhancement mode of a failure diagnostic device based on the OBD II standard to collect injection time and rotational speed of the injector for a predetermined time and calculated based on this data. We confirmed that by stopping the injector alone, fuel consumption was reduced 6 to 22% and is reduced when the cutoff cylinder is varied.


Sign in / Sign up

Export Citation Format

Share Document