Biomarker Geochemistry and Hydrocarbon Generation Potential of the Evaporites in Dongying Lacustrine Basin

2012 ◽  
Vol 616-618 ◽  
pp. 1042-1047
Author(s):  
Zhong Hong Chen

To investigate hydrocarbon potential of the evaporites, some deep wells such as Haoke-1 well and Fengshen-2 well were intensively cored, tested by TOC, Rock-Eval, and chromatography and mass spectrometry and evaluated using geochemistry of biomarker and hydrocarbon generation. High content of gammacerane and low Pr/Ph was exhibited in the evaporite system compared to the non-evaporite system. Different response of biomarkers parameters for the different sedimentary systems was exhibited, such as C19/(C19+C23) terpanes, C29/(C27+C28+C29) steranes, C24/C23 and C22/C21 tricyclic terpane. The evaporites and mud stones have the capacity to generate and expel hydrocarbons. The tested samples were mostly typeⅠand typeⅡ1 of organic matter, and their original generating capacity can reach 40 mg/g rock and 20 mg/g rock respectively. The efficiency of hydrocarbon expulsion reached 60%, but the distribution of organic matter and its generative potential was highly variable. In general, the mudstones show greater generative potential than the evaporites. High maturity severely reduced the capacity of their rocks to generate and expel petroleum.

2019 ◽  
Vol 1 (2) ◽  
Author(s):  
Pingping Li ◽  
Dawei Lv ◽  
Huiyong Wang ◽  
Changyong Lu

This paper studied the residual strata distribution of Carboniferous-Permian in Jiyang Depression, the organic geochemical characteristics of shale and the correlation of hydrocarbon-generating potential of shale by applying geochemistry, petroleum geology and coal geology, for study hydrocarbon generation potential of Permo-Carboniferous coal shale in Jiyang Depression. The results show that the thickness of Carboniferous-Permian residual strata in Jiyang Depression is generally 200-800 m, the thickest can reach 900 m; coal shale has good organic matter abundance and is type III kerogen, which is conducive to gas generation, and organic matter maturity reaches maturity-higher maturity stage; Benxi Formation and Taiyuan Formation have better hydrocarbon generation potential; medium to good hydrocarbon source rocks can be found in every sag of Shanxi Formation hydrocarbon source rocks, but the scope is limited, and the overall evaluation is still medium. Compared with other areas in China, it is found that the hydrocarbon-generating capacity of coal-bearing shale of Carboniferous-Permian in Jiyang Depression is generally at a medium level, which has a certain shale gas exploration potential.


2019 ◽  
Vol 11 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Wrya J. Mamaseni ◽  
Srood F Naqshabandi ◽  
Falah Kh. Al-Jaboury

Abstract In this study collected samples of Chia Gara Formation in Atrush, Shaikhan and Sarsang oilfields are used to geochemical characteristics of organic matter in this formation. This determination was based on Rock-Eval pyrolysis and Biomarker analyses. The Chia Gara Formation can be considered as good to excellent source rock; it’s TOC content ranges from 1.14-8.5wt% with an average of 1.85%, 3.91%, and 6.94% in Atush-1, Mangesh-1 and Shaikhan-8 wells respectively. The samples of Chia Gara Formation contain kerogen type II. These properties are considered optimal for oil generation. The low oxygen index (OI) and pristane/phytane (Pr/Ph) ratios (Average 20.73, 0.61 respectively) and high hydrogen index (HI) (average 637.6) indicate that the formation was deposited under anoxic condition. According to regular sterane (C27%, C28%, C29%) and terpanes ratios (C29/C30, C31/C30 hopane), the formation was deposited in marine environment. The average value of the Carbon Preference Index (CPI) is one with Tmax values of more than 430 ºC; these indicate peak oil window for the selected samples. Overall, the 20S/(20S+20R), ββ/(ββ+αα)C29 steranes and 22R/(22R+22S)C32homohopane, with Ts/ (Ts+Tm), and moretane/ hopane ratios point to a mature organic matter and to the ability of the formation to generate oil.


2021 ◽  
Vol 16 (1) ◽  
pp. 17-30
Author(s):  
Octavian COLŢOI ◽  
◽  
Flori CULESCU ◽  
Gilles NICOLAS

The scope of this paper is to assess the hydrocarbon potential of Silurian, respectively, the maturity of this stratigraphical interval, based, especially, of the geological and geophysical data derived from eight boreholes located in the north-eastern part of Moldavian Platform - Romania. The main conclusion is that the organic matter contents measured in the core and cutting samples of the different wells are low with the Organic Carbon (TOC) (residual) mainly clearly lower than 1%. Due to the poorness of the sample and the high maturity the petroleum potential and organic matter cannot be assessed. Estimation of the initial TOC allows to differentiate a richer interval at 24 – 27m thick below the top of Silurian. It shows higher TOC with estimated initial TOC reaching 3.6 % weight at the most. The maturity is high and shows a rapid increase with depth between around 2% at 200m and 4% eq. VRr at 1100m. An estimation of the eroded cap-rock is of around 3000m. Mineral carbon content obtained from Rock Eval permits to separate two lithological intervals: carbonated in the upper part (thickness of 250-300m), argillaceous in the lower part.


2018 ◽  
Vol 9 (2) ◽  
pp. 937-951 ◽  
Author(s):  
Sajjad Ahmad ◽  
Faizan Ahmad ◽  
Abd Ullah ◽  
Muhammad Eisa ◽  
Farman Ullah ◽  
...  

Abstract The present study details the hydrocarbon source rock geochemistry and organic petrography of the outcrop and subsurface samples of the Middle Jurassic Chiltan Formation and the Lower Cretaceous Sembar Formation from the Sann #1 well Central and Southern Indus Basin, Pakistan. The total organic carbon (TOC), Rock–Eval pyrolysis, vitrinite reflectance (Ro) % and Maceral analysis techniques were used and various geochemical plots were constructed to know the quality of source rock, type of kerogen, level of maturity and migration history of the hydrocarbons. The outcrop and Sann #1 well data on the Sembar Formation reveals poor, fair, good and very good quality of the TOC, type II–III kerogen, immature–mature organic matter and an indigenous hydrocarbon generation potential. The outcrop and Sann #1 well data on the Chiltan Formation show a poor–good quality of TOC, type II–III kerogen, immature–mature source rock quality and having an indigenous hydrocarbon generation potential. The vitrinite reflectance [Ro (%)] values and Maceral types [fluorescent amorphous organic matter, exinite, alginite and inertnite] demonstrate that maturity in both Sembar and the Chiltan formation at surface and subsurface fall in the oil and gas generation zone to cracking of oil to gas condensate zone. Recurrence of organic rich and poor intervals within the Sembar and Chiltan formation are controlled by the Late Jurassic thermal uplift preceding the Indo-Madagascar separation from the Afro-Arabian Plate and Early Cretaceous local transgressive–regressive cycles. From the current study, it is concluded that both Sembar and Chiltan formation can act as a potential hydrocarbon source rock in the study area.


Author(s):  
Nasar Khan ◽  
Wasif Ullah ◽  
Syed M. Siyar ◽  
Bilal Wadood ◽  
Tariq Ayyub ◽  
...  

AbstractThe present study aims to investigate the origin, type, thermal maturity and hydrocarbon generation potential of organic matter and paleo-depositional environment of the Early Paleocene (Danian) Hangu Formation outcropped in the Kala-Chitta Range of Northwest Pakistan, Eastern Tethys. Organic-rich shale and coal intervals were utilized for geochemical analyses including TOC (total organic carbon) and Rock–Eval pyrolysis coupled with carbon (δ13Corg) and nitrogen (δ15Norg) stable isotopes. The organic geochemical results showed that the kerogen Type II (oil/gas prone) and Type III (gas prone) dominate the investigated rock units. The TOC (wt%) and S2 yield indicate that the rock unit quantifies sufficient organic matter (OM) to act as potential source rock. However, the thermal maturity Tmax°C marks the over maturation of the OM, which may be possibly linked with the effect attained from nearby tectonically active Himalayan Foreland Fold-and-Thrust Belt system and associated metamorphosed sequences. The organic geochemical analyses deciphered indigenous nature of the OM and resultant hydrocarbons. The δ13Corg and δ15Norg stable isotopic signatures illustrated enrichment of the OM from both marine and terrestrial sources accumulated into the Hangu Formation. The Paleo-depositional model established using organic geochemical and stable isotopic data for the formation supports its deposition in a shallow marine proximal inner shelf environment with prevalence of sub-oxic to anoxic conditions, a scenario that could enhance the OM preservation. Overall, the formation holds promising coal and shale intervals in terms of organic richness, but due to relatively over thermal maturation, it cannot act as an effective source rock for liquid hydrocarbon generation and only minor amount of dry gas can be expected. In implication, the results of this study suggest least prospects of liquid hydrocarbon generation potential within Hangu Formation at studied sections.


2021 ◽  
Vol 25 (5) ◽  
pp. 701-717
Author(s):  
M.U. Uzoegbu ◽  
C.U. Ugwueze ◽  
J.I. Nwosu

The present work deals with a study based on the geochemical techniques such as biomarkers, Rock-Eval pyrolysis, and detailed petrographic study to evaluate hydrocarbon generation potential of coal by collecting nine coal and carbonaceous shale samples from boreholes in Awgu Formation of Middle Benue Trough, Nigeria. The values vitrinite reflectance (0.94–1.15%VR) and Tmax (446–469°C) confirmed that samples are matured enough to generate liquid and gaseous hydrocarbon in coal. The coal samples also contain sufficient quantity of vitrinite and liptinite macerals varying from 70.28% to 74.10 wt%, which confirm the production of liquid hydrocarbon. The cross-plot between H/C and O/C atomic ratio indicates that samples were predominant in the bituminous rank and having kerogen Type III makes it suitable for hydrocarbon generation. Similar results were found in Rock-Eval pyrolysis analysis (Types II-III and Type III kerogen). The homohopane index (C35/C31 - C35) and homohopane ratio (C35αβS/C34αβS) range from 0.02 to 0.12 and 0.15 to 0.92 indicates oxic condition during organic matter deposition from Lafia-Obi samples. The Moretane/Hopane, Hopane/Hopane + Moretane, Ts/Ts + Tm, 22S/22S + 22RC32homohopane ratios range from 0.06 to 0.14; 0.88 to 0.94; 0.34 to 0.66; and 0.53 to 0.62 and 20S/20S+20R and αββ/αββ+ααα C29 ratios range from 0.43 to 0.58 and 0.42 to 0.55 indicate samples ar e within the late oil window/gas phase. Plots of 22S/22S+22R C32hopanes against C29αββ/αββ+ααα steranes show that Lafia-Obisamples are thermally mature.


Sign in / Sign up

Export Citation Format

Share Document