scholarly journals Hydrocarbon source rock assessment of the shale and coal bearing horizons of the Early Paleocene Hangu Formation in Kala-Chitta Range, Northwest Pakistan

Author(s):  
Nasar Khan ◽  
Wasif Ullah ◽  
Syed M. Siyar ◽  
Bilal Wadood ◽  
Tariq Ayyub ◽  
...  

AbstractThe present study aims to investigate the origin, type, thermal maturity and hydrocarbon generation potential of organic matter and paleo-depositional environment of the Early Paleocene (Danian) Hangu Formation outcropped in the Kala-Chitta Range of Northwest Pakistan, Eastern Tethys. Organic-rich shale and coal intervals were utilized for geochemical analyses including TOC (total organic carbon) and Rock–Eval pyrolysis coupled with carbon (δ13Corg) and nitrogen (δ15Norg) stable isotopes. The organic geochemical results showed that the kerogen Type II (oil/gas prone) and Type III (gas prone) dominate the investigated rock units. The TOC (wt%) and S2 yield indicate that the rock unit quantifies sufficient organic matter (OM) to act as potential source rock. However, the thermal maturity Tmax°C marks the over maturation of the OM, which may be possibly linked with the effect attained from nearby tectonically active Himalayan Foreland Fold-and-Thrust Belt system and associated metamorphosed sequences. The organic geochemical analyses deciphered indigenous nature of the OM and resultant hydrocarbons. The δ13Corg and δ15Norg stable isotopic signatures illustrated enrichment of the OM from both marine and terrestrial sources accumulated into the Hangu Formation. The Paleo-depositional model established using organic geochemical and stable isotopic data for the formation supports its deposition in a shallow marine proximal inner shelf environment with prevalence of sub-oxic to anoxic conditions, a scenario that could enhance the OM preservation. Overall, the formation holds promising coal and shale intervals in terms of organic richness, but due to relatively over thermal maturation, it cannot act as an effective source rock for liquid hydrocarbon generation and only minor amount of dry gas can be expected. In implication, the results of this study suggest least prospects of liquid hydrocarbon generation potential within Hangu Formation at studied sections.

2017 ◽  
Vol 5 (2) ◽  
pp. SF225-SF242 ◽  
Author(s):  
Xun Sun ◽  
Quansheng Liang ◽  
Chengfu Jiang ◽  
Daniel Enriquez ◽  
Tongwei Zhang ◽  
...  

Source-rock samples from the Upper Triassic Yanchang Formation in the Ordos Basin of China were geochemically characterized to determine variations in depositional environments, organic-matter (OM) source, and thermal maturity. Total organic carbon (TOC) content varies from 4 wt% to 10 wt% in the Chang 7, Chang 8, and Chang 9 members — the three OM-rich shale intervals. The Chang 7 has the highest TOC and hydrogen index values, and it is considered the best source rock in the formation. Geochemical evidence indicates that the main sources of OM in the Yanchang Formation are freshwater lacustrine phytoplanktons, aquatic macrophytes, aquatic organisms, and land plants deposited under a weakly reducing to suboxic depositional environment. The elevated [Formula: see text] sterane concentration and depleted [Formula: see text] values of OM in the middle of the Chang 7 may indicate the presence of freshwater cyanobacteria blooms that corresponds to a period of maximum lake expansion. The OM deposited in deeper parts of the lake is dominated by oil-prone type I or type II kerogen or a mixture of both. The OM deposited in shallower settings is characterized by increased terrestrial input with a mixture of types II and III kerogen. These source rocks are in the oil window, with maturity increasing with burial depth. The measured solid-bitumen reflectance and calculated vitrinite reflectance from the temperature at maximum release of hydrocarbons occurs during Rock-Eval pyrolysis ([Formula: see text]) and the methylphenanthrene index (MPI-1) chemical maturity parameters range from 0.8 to [Formula: see text]. Because the thermal labilities of OM are associated with the kerogen type, the required thermal stress for oil generation from types I and II mixed kerogen has a higher and narrower range of temperature for hydrocarbon generation than that of OM dominated by type II kerogen or types II and III mixed kerogen deposited in the prodelta and delta front.


2018 ◽  
Vol 9 (2) ◽  
pp. 937-951 ◽  
Author(s):  
Sajjad Ahmad ◽  
Faizan Ahmad ◽  
Abd Ullah ◽  
Muhammad Eisa ◽  
Farman Ullah ◽  
...  

Abstract The present study details the hydrocarbon source rock geochemistry and organic petrography of the outcrop and subsurface samples of the Middle Jurassic Chiltan Formation and the Lower Cretaceous Sembar Formation from the Sann #1 well Central and Southern Indus Basin, Pakistan. The total organic carbon (TOC), Rock–Eval pyrolysis, vitrinite reflectance (Ro) % and Maceral analysis techniques were used and various geochemical plots were constructed to know the quality of source rock, type of kerogen, level of maturity and migration history of the hydrocarbons. The outcrop and Sann #1 well data on the Sembar Formation reveals poor, fair, good and very good quality of the TOC, type II–III kerogen, immature–mature organic matter and an indigenous hydrocarbon generation potential. The outcrop and Sann #1 well data on the Chiltan Formation show a poor–good quality of TOC, type II–III kerogen, immature–mature source rock quality and having an indigenous hydrocarbon generation potential. The vitrinite reflectance [Ro (%)] values and Maceral types [fluorescent amorphous organic matter, exinite, alginite and inertnite] demonstrate that maturity in both Sembar and the Chiltan formation at surface and subsurface fall in the oil and gas generation zone to cracking of oil to gas condensate zone. Recurrence of organic rich and poor intervals within the Sembar and Chiltan formation are controlled by the Late Jurassic thermal uplift preceding the Indo-Madagascar separation from the Afro-Arabian Plate and Early Cretaceous local transgressive–regressive cycles. From the current study, it is concluded that both Sembar and Chiltan formation can act as a potential hydrocarbon source rock in the study area.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ling Ma ◽  
Zhihuan Zhang ◽  
Weiqiu Meng

The Upper Triassic Chang 9 organic-rich sediments have been considered as effective hydrocarbon source rocks for the Mesozoic petroleum system in the Ordos Basin. Previous studies on the Chang 9 member mostly focused on the influence of their paleoproductivity and paleoredox conditions on the organic matter (OM) enrichment, whereas there are few studies on the influence of the paleoclimate condition and sediment provenance on the OM enrichment. In this study, a series of geochemical analyses was performed on the Chang 9 core samples, and their hydrocarbon generation potential, paleoclimate condition, and sediment provenance were assessed to analyze the effect of paleoclimate-provenance on OM enrichment. The Chang 9 source rocks are characterized by high OM abundance, type I−II OM type, and suitable thermal maturity, implying good hydrocarbon generation potential. Based on the C-values and Sr/Cu ratios, the paleoclimate condition of the Chang 9 member was mainly semihumid. In addition, the Th/Co vs. La/Sc diagram and negative δEuN indicate that the Chang 9 sediments were mainly derived from felsic source rocks. Meanwhile, the paleoweathering intensity of the Chang 9 member is moderate based on moderate values of CIA, PIA, and CIW, which corresponds to the semihumid paleoclimate. The relatively humid paleoclimate not only enhances photosynthesis of the primary producer, but also promotes chemical weathering intensity, leading to suitable terrestrial clastic influx to the lacustrine basin, which is beneficial for OM enrichment.


Author(s):  
Nazan Yalcin Erik ◽  
Faruk Ay

AbstractWith this study, the hydrocarbon generation potential of Miocene aged coals around Arguvan-Parçikan in the northern district of Malatya province was evaluated with the aid of petrological and organic geochemical data. According to organic petrography, coal quality data, and low thermal maturity, the Arguvan-Parçikan coals are of high-ash, high-sulfur subbituminous B/C rank. The organic fraction of the coals is mostly comprised of humic group macerals, with small percentages derived from the inertinite and liptinite groups. The mineral matter of the coals is comprised mainly of calcite and clay minerals. The total organic carbon (TOC, wt%) values of the shale and coal samples are between 2.61 wt% and 43.02 wt%, and the hydrogen index values are between 73 and 229 mg HC/g TOC. Pyrolysis (Tmax, PI), huminite/vitrinite reflectance (Ro, %), and biomarker ratios (CPI, Pr/Ph ratio, Ts/(Ts + Tm) ratio, C32 homohopane ratio (22S/22S + 22R) and C29ββ/(ββ + αα sterane ratio) indicate that the organic matter of the studied coals is thermally immature. When all these data are taken together, Miocene aged coals around Arguvan are suitable for hydrocarbon generation, especially gas, in terms of organic matter type (Type III and Type II/III mixed), organic matter amount (> 10 wt% TOC), however, low liptinitic macerals (< 15%–20%), low hydrogen index (< 200 mg HC/g TOC) and low thermal maturity values inhibit the hyrocarbon generation.


2004 ◽  
Vol 29 ◽  
Author(s):  
Sonali Guha ◽  
K. N. Singh

Rock eval pyrolysis is instrumental in rapid evaluation of maturation and source rock characteristics by providing vital information about the quantity, type and thermal maturity of organic matter. The Ib-Valley coal deposits have been characterized for their source rock potentiality and thus to explore the chances of their involvement in hydrocarbon generation.


2020 ◽  
Vol 10 (8) ◽  
pp. 3191-3206
Author(s):  
Olusola J. Ojo ◽  
Ayoola Y. Jimoh ◽  
Juliet C. Umelo ◽  
Samuel O. Akande

Abstract The Patti Formation which consists of sandstone and shale offers the best potential source beds in the Bida Basin. This inland basin is one of the basins currently being tested for hydrocarbon prospectivity in Nigeria. Fresh samples of shale from Agbaja borehole, Ahoko quarry and Geheku road cut were analysed using organic geochemical and palynological techniques to unravel their age, paleoecology, palynofacies and source bed hydrocarbon potential. Palynological data suggest Maastrichtian age for the sediments based on the abundance of microfloral assemblage; Retidiporites magdalenensis, Echitriporites trianguliformis and Buttinia andreevi. Dinocysts belonging to the Spiniferites, Deflandrea and Dinogymnium genera from some of the analysed intervals are indicative of freshwater swamp and normal sea conditions. Palynological evidence further suggests mangrove paleovegetation and humid climate. Relatively high total organic carbon TOC (0.77–8.95 wt%) was obtained for the shales which implies substantial concentration of organic matter in the source beds. Hydrocarbon source rock potential ranges from 0.19 to 0.70 mgHC/g.rock except for a certain source rock interval in the Agbaja borehole with high yield of 25.18 mgHC/g.rock. This interval also presents exceptionally high HI of 274 mgHC/g.TOC and moderate amount of amorphous organic matter. The data suggests that in spite of the favourable organic matter quantity, the thermal maturity is low as indicated by vitrinite reflectance and Tmax (0.46 to 0.48 Ro% and 413 to 475 °C, respectively). The hydrocarbon extracts show abundance of odd number alkanes C27–C33, low sterane/hopane ratio and Pr/Ph > 2. We conclude that the source rocks were terrestrially derived under oxic condition and dominated by type III kerogen. Type II organic matter with oil and gas potential is a possibility in Agbaja area of Bida Basin. Thermal maturity is low and little, or no hydrocarbon has been generated from the source rocks.


ACS Omega ◽  
2020 ◽  
Vol 5 (23) ◽  
pp. 14013-14029 ◽  
Author(s):  
Amélie Cavelan ◽  
Mohammed Boussafir ◽  
Claude Le Milbeau ◽  
Fatima Laggoun-Défarge

Sign in / Sign up

Export Citation Format

Share Document