The Side-Chain Effects on Photovoltaic Properties of Copolymers Based on Phenothiazine and Thiophene

2013 ◽  
Vol 634-638 ◽  
pp. 2621-2628 ◽  
Author(s):  
Han Sol Yoo ◽  
Dae Hee Yun ◽  
Tae Won Ko ◽  
Yong Sung Park ◽  
Je Wan Woo

In this study, the alternating conductive polymers based on phenothiazine and bithiophene unit, poly[(N-10-dodecyl-phenothiazin-3,7-ylene)-alt-(2,2’-bithiophen-5-yl)] (P1) and poly[(N-10- dodecyl-phenothiazin-3,7-ylene)-alt-(4,4’-didodecyl-2,2’-bithiophen-5-yl)] (P2), were synthesized by Suzuki coupling reaction in the presence of palladium catalyst. The structures of synthesized compounds were confirmed by 1H NMR. The optical, electrochemical properties of synthesized polymers were investigated by UV-Vis, cyclic voltammetry (CV). The optical band gap of 2.22 eV and 2.50 eV was obtained from absorption onset of UV-Vis spectrum. Then, the two devices using blends of the polymer, as a donor, and PC71BM, as an acceptor, were fabricated by spin-coating. The device with a P1:PC71BM (1:4, w/w) as an active layer exhibited the best performance with an open circuit voltage (VOC) of 0.68 V, short circuit current (JSC) of 3.5 mA/cm2, fill factor (FF) of 31.8 % and power conversion efficiency (PCE) of 0.74 %.

2015 ◽  
Vol 1771 ◽  
pp. 213-219
Author(s):  
Sheng-Hsiung Yang ◽  
Chia-Hao Hsieh

ABSTRACTThe goal of this research is to synthesize novel linear and hyperbranched polythiophene derivatives containing diketopyrrolopyrrole (DPP) as linking groups, and to investigate thermal, optical, electrochemical, and photovoltaic properties of those derivatives. Polymers with high regioregularity were synthesized via the Universal Grignard metathesis polymerization. Those linear or hyperbranched polythiophenes containing DPP bridging moieties showed higher molecular weights and better thermal stability compared with normal P3HT. The UV-vis absorption spectra of the DPP-containing polymers are similar to that of P3HT in film state, while they show distinct attenuation in fluorescent emission. Finally, all polymers were blended with PC61BM and used as active layers for fabrication of inverted solar devices. The devices based on those DPP-containing polythiophenes revealed the open-circuit voltage (VOC) of 0.55–0.58 V, the short-circuit current (JSC) of 8.62–16.21 mA/cm2, the fill factor (FF) of 36–41%, and the power conversion efficiency (PCE) of 1.73–3.74%.


2018 ◽  
Vol 9 ◽  
pp. 1802-1808 ◽  
Author(s):  
Katherine Atamanuk ◽  
Justin Luria ◽  
Bryan D Huey

The nanoscale optoelectronic properties of materials can be especially important for polycrystalline photovoltaics including many sensor and solar cell designs. For thin film solar cells such as CdTe, the open-circuit voltage and short-circuit current are especially critical performance indicators, often varying between and even within individual grains. A new method for directly mapping the open-circuit voltage leverages photo-conducting AFM, along with an additional proportional-integral-derivative feedback loop configured to maintain open-circuit conditions while scanning. Alternating with short-circuit current mapping efficiently provides complementary insight into the highly microstructurally sensitive local and ensemble photovoltaic performance. Furthermore, direct open-circuit voltage mapping is compatible with tomographic AFM, which additionally leverages gradual nanoscale milling by the AFM probe essentially for serial sectioning. The two-dimensional and three-dimensional results for CdTe solar cells during in situ illumination reveal local to mesoscale contributions to PV performance based on the order of magnitude variations in photovoltaic properties with distinct grains, at grain boundaries, and for sub-granular planar defects.


2014 ◽  
Vol 665 ◽  
pp. 111-114 ◽  
Author(s):  
Ying Huang ◽  
Xiao Ming Shen ◽  
Xiao Feng Wei

In this paper, InAlN/Si single-heterojunction solar cells have been theoretically simulated based on wxAMPS software. The photovoltaic parameters, such as open circuit voltage, short circuit current, fill factor and conversion efficiency were investigated with changing the indium content and thickness of n-InAlN layer. Simulation results show that the optimum efficiency of InAlN/Si solar cells is 23.1% under AM 1.5G spectral illuminations, with the indium content and thickness of n-InAlN layer are 0.65 and 600nm, respectively. The simulation would contribute to design and fabricate high efficiency InAlN/Si solar cells in experiment.


2021 ◽  
Vol 5 (3) ◽  
pp. 242-250
Author(s):  
D. Sergeyev ◽  
K. Shunkeyev ◽  
B. Kuatov ◽  
N. Zhanturina

In this paper, the features of the characteristics of model thin-film solar cells based on the non-toxic multicomponent compound CuZn2AlS4 (CZAS) are considered. The main parameters (open-circuit voltage, short-circuit current, fill factor, efficiency) and characteristics (quantum efficiency, current-voltage characteristic) of thin-film solar cells based on CZAS have been determined. The minimum optimal thickness of the CZAS absorber is found (1-1.25 microns). Deterioration of the performance of solar cells with an increase in operating temperature (280-400 K) is shown. It is revealed that in the wavelength range of 390-500 nm CZAS has a high external quantum efficiency, which allows its use in designs of multi-junction solar cells designed to absorb solar radiation in the specified range. It is shown that the combination of CZAS films with a buffer layer of non-toxic ZnS increases the performance of solar cells.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2434
Author(s):  
Zhanwu Wang ◽  
Dongyue Jiang ◽  
Fancong Zeng ◽  
Yingrui Sui

In this study, we prepared Na-doped Cu2ZnSn(S,Se)4 [noted as (Na0.1Cu0.9)2ZnSn(S,Se)4] films on the Mo substrate using a simple and cheap sol–gel method together with the post-annealing technique. The effects of selenization temperature on the properties of Na-doped Cu2ZnSn(S,Se)4 were surveyed. The results indicated that some sulfur atoms in the films were substituted by selenium atoms by increasing the selenization temperature, and all films selenized at different temperatures had a kesterite structure. As the selenization temperature increased from 520 to 560 °C, the band gaps of the film can be tuned from 1.03 to 1 eV. The film with better morphology and opto-electrical properties can be obtained at an intermediate selenization temperature range (e.g., 540 °C), which had the lowest resistivity of 47.7 Ω cm, Hall mobility of 4.63 × 10−1 cm2/Vs, and carrier concentration of 2.93 × 1017 cm−3. Finally, the best power conversion efficiency (PCE) of 4.82% was achieved with an open circuit voltage (Voc) of 338 mV, a short circuit current density (Jsc) of 27.16 mA/cm2 and a fill factor (FF) of 52.59% when the selenization temperature was 540 °C.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 746 ◽  
Author(s):  
Mun Ho Yang ◽  
Ho Cheol Jin ◽  
Joo Hyun Kim ◽  
Dong Wook Chang

Three conjugated polymers, in which the electron-donating (D) 5-alkylthiophene-2-yl-substitued benzodithiophene was linked to three different electron-accepting (A) moieties, i.e., benzothiadiazole (BT), diphenylquinoxaline (DPQ), and dibenzophenazine (DBP) derivative via thiophene bridge, were synthesized using the Stille coupling reaction. In particular, the strong electron-withdrawing cyano (CN) group was incorporated into the A units BT, DPQ, and DBP to afford three D–A type target polymers PB–BTCN, PB–DPQCN, and PB–DBPCN, respectively. Owing to the significant contribution of the CN-substituent, these polymers exhibit not only low-lying energy levels of both the highest occupied molecular orbital and the lowest unoccupied molecular orbital, but also reduced bandgaps. Furthermore, to investigate the photovoltaic properties of polymers, inverted-type devices with the structure of ITO/ZnO/Polymer:PC71BM/MoO3/Ag were fabricated and analyzed. All the polymer solar cells based on the three cyano-substituted conjugated polymers showed high open-circuit voltages (Voc) greater than 0.89 V, and the highest power conversion efficiency of 4.59% was obtained from the device based on PB-BtCN with a Voc of 0.93 V, short-circuit current of 7.36 mA cm−2, and fill factor of 67.1%.


Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 54 ◽  
Author(s):  
Zhonglian Wu ◽  
Huanxiang Jiang ◽  
Xingzhu Wang ◽  
Lei Yan ◽  
Wei Zeng ◽  
...  

To investigate the influence of fluoride phenyl side-chains onto a quinoxaline (Qx) unit on the photovoltaic performance of the narrow bandgap (NBG) photovoltaic polymers, herein, two novel NBG copolymers, PBDTT-DTQx and PBDTT-DTmFQx, were synthesized and characterized. 2-ethylhexylthiothiophene-substituted benzodithiophene (BDTT), 2,3-diphenylquinoxaline (DQx) [or 2,3-bis(3-fluorophenyl)quinoxaline (DmFQx)] and 2-ethylhexylthiophene (T) were used as the electron donor (D) unit, electron-withdrawing acceptor (A) unit and π-bridge, respectively. Compared to non-fluorine substituted PBDTT-DTQx, fluoride PBDTT-DTmFQx exhibited a wide UV-Vis absorption spectrum and high hole mobility. An enhanced short-circuit current (Jsc) and fill factor (FF) simultaneously gave rise to favorable efficiencies in the polymer/PC71BM-based polymer solar cells (PSCs). Under the illumination of AM 1.5G (100 mW cm−2), a maximum power conversion efficiency (PCE) of 6.40% was achieved with an open-circuit voltage (Voc) of 0.87 V, a Jsc of 12.0 mA cm−2 and a FF of 61.45% in PBDTT-DTmFQx/PC71BM-based PSCs, while PBDTT-DTQx-based devices also exhibited a PCE of 5.43%. The excellent results obtained demonstrate that PBDTT-DTmFQx by fluorine atom engineering could be a promising candidate for organic photovoltaics.


2011 ◽  
Vol 1321 ◽  
Author(s):  
Xiaodan Zhang ◽  
Guanghong Wang ◽  
Shengzhi Xu ◽  
Shaozhen Xiong ◽  
Xinhua Geng ◽  
...  

ABSTRACTLight-induced metastability of amorphous/microcrystalline (micromorph) silicon tandem solar cell, in which the microcrystalline bottom cell was deposited in a single-chamber system, has been studied under a white light for more than 1000 hours. Two different light-induced metastable behaviors were observed. The first type was the conventional light-induced degradation, where the open-circuit voltage (Voc), fill factor (FF), and short-circuit current density (Jsc) were degraded, hence the efficiency was degraded as well. This phenomenon was observed mainly in the tandem cells with a bottom cell limited current mismatch. The second type was with a light-induced increase in Voc, which sometimes resulted in an increase in efficiency. The second type of light-induced metastability was observed in the tandem cells with a top cell limited current mismatch. The possible mechanisms for these phenomena are discussed.


2020 ◽  
Vol 6 ◽  
Author(s):  
Kawtar Belrhiti Alaoui ◽  
Saida Laalioui ◽  
Badr Ikken ◽  
Abdelkader Outzourhit

In this work, a detailed description of the various steps involved in the fabrication of high-efficiency hydrogenated amorphous-silicon cells using plasma-enhanced chemical vapor deposition, and a novel shadow masking technique is presented. The influence of the different masking methods on the cell parameters was experimentally investigated. Particularly, the short-circuit current density (Jsc), the fill factor, the open circuit voltage (Voc), and the resistive losses indicated by the shunt (Rsh) and series (Rs) resistances were measured in order to assess the performance of the cells as a function of the masks used during the cell fabrication process. The results indicate that the use of a masking technique where the p-i-n structure was first deposited over the whole surface of a 20 cm2 × 20 cm2 substrate, followed by the deposition, deposits the back contact through a metal mask, and by the ultrasonic soldering of indium to access the front contact is a good alternative to laser scribing in the laboratory scale. Indeed, a record efficiency of 8.8%, with a short-circuit current density (Jsc) of 15.6 mA/cm2, an open-circuit voltage (Voc) of 0.8 V, and a fill factor of 66.07% and low resistive losses were obtained by this technique. Furthermore, a spectroscopic ellipsometry investigation of the uniformity of the film properties (thickness, band gap, and refractive index) on large-area substrates, which is crucial to mini-module fabrication on a single substrate and for heterojunction development, was performed using the optimal cell deposition recipes. It was found that the relative variations of the band gap, thickness, and refractive index n are less than 1% suggesting that the samples are uniform over the 20 cm2 × 20 cm2 substrate area used in this work.


Sign in / Sign up

Export Citation Format

Share Document