Tunneling Radiation from the Cosmological Horizon

2013 ◽  
Vol 647 ◽  
pp. 918-922
Author(s):  
Hui Ling Li ◽  
Cheng Cheng ◽  
Yan Ge Wu

Extending the Parikh’s method of quantum tunneling radiation, Hawking radiation via tunneling from the cosmological horizon of NUT-Kerr-Newman de Sitter black hole is deeply studied. The result shows that the tunneling rate on the cosmological horizon is related to the change of Bekenstein-Hawking entropy and the real spectrum is not strictly thermal at all, but is consistent with an underlying unitary theory.

2016 ◽  
Vol 94 (12) ◽  
pp. 1369-1371 ◽  
Author(s):  
Gu-Qiang Li

The tunneling radiation of particles from Born–Infeld anti-de Sitter black holes is studied by using the Parikh–Wilczek method and the emission rate of a particle is calculated. It is shown that the emission rate is related to the change of the Bekenstein–Hawking entropy of the black hole and the emission spectrum deviates from the purely thermal spectrum but is consistent with an underlying unitary theory.


2012 ◽  
Vol 170-173 ◽  
pp. 2940-2943
Author(s):  
Qing Quan Jiang

In Anti-de Sitter space-time, we develop the Parikh-Wilczek’s semi-classical quantum tunneling method to investigate the Hawking radiation of the charged massive particle via tunneling from a plane symmetry black hole. The result shows that, when taking self-gravitation interaction into account, the tunneling rate of the charged massive particle is related to the change of Bekenstein-Hawking entropy, and that the exact emission spectrum is not strictly pure thermal, but is consistent with the underlying unitary theory.


2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Bei Sha ◽  
Zhi-E Liu ◽  
Xia Tan ◽  
Yu-Zhen Liu ◽  
Jie Zhang

The quantum tunneling radiation of fermions with arbitrary spin at the event horizon of Kerr-de Sitter black hole is accurately modified by using the dispersion relation proposed in the study of string theory and quantum gravitational theory. The derived tunneling rate and temperature at the black hole horizons are analyzed and studied.


2012 ◽  
Vol 538-541 ◽  
pp. 2169-2174
Author(s):  
Qing Quan Jiang

In this paper, when considering the conservation of energy, electric charge and angular momentum, we develop the Parikh-Wilczek’s quantum tunneling method to study the Hawking radiation of charged particles via tunneling from the event horizon of Kim black hole. The result shows the exact radiation spectrum deviates from the precisely thermal one, but satisfies an underlying unitary theory, which provides a possible solution to the information loss during the black hole evaporation.


2007 ◽  
Vol 22 (12) ◽  
pp. 891-901 ◽  
Author(s):  
QING-QUAN JIANG ◽  
HUI-LING LI ◽  
SHU-ZHENG YANG ◽  
DE-YOU CHEN

Applying Parikh–Wilczek's semiclassical quantum tunneling method, we investigate the tunneling radiation characteristics of a torus-like black hole and Kerr–Newman–Kausya de Sitter black hole. Both black holes have the cosmological constant Λ, but a torus-like black hole is in anti-de Sitter spacetime and the other black hole is in de Sitter spacetime. The derived results show that the tunneling rate is related to the change of Bekenstein–Hawking entropy, and the factual radiated spectrum is not precisely thermal, but is consistent with an underlying unitary theory, which gives a might explanation to the paradox of black hole information lost.


2009 ◽  
Vol 18 (08) ◽  
pp. 1227-1241 ◽  
Author(s):  
G. E. VOLOVIK

We discuss why the tunneling picture does not necessarily lead to Hawking radiation from the de Sitter horizon. The experience with the condensed matter analogs of the event horizon suggests that the de Sitter vacuum is stable against Hawking radiation. On the other hand, the detector immersed in the de Sitter background will detect the radiation, which looks thermal, with the effective temperature twice as large as the Hawking temperature associated with the cosmological horizon.


2011 ◽  
Vol 26 (14) ◽  
pp. 999-1007 ◽  
Author(s):  
JERZY MATYJASEK ◽  
KATARZYNA ZWIERZCHOWSKA

Perturbative solutions to the fourth-order gravity describing spherically-symmetric, static and electrically charged black hole in an asymptotically de Sitter universe is constructed and discussed. Special emphasis is put on the lukewarm configurations, in which the temperature of the event horizon equals the temperature of the cosmological horizon.


Sign in / Sign up

Export Citation Format

Share Document