Research on Porous Properties of Air-Entrained Lightweight Aggregate Concrete

2013 ◽  
Vol 652-654 ◽  
pp. 1209-1212
Author(s):  
Wei Xin Hu ◽  
Abulitipu. Abudula

Lightweight aggregate concrete with bleed air : the air-entraining agent added to the lightweight aggregate concrete , cement paste to form the porous structure of the porous structure of the right amount of artificial lightweight aggregate concrete . Reduce the density of the concrete to improve the insulation properties of the concrete . Applied to structural insulation concrete strength than 20Mpa, the thermal conductivity is less than 0.36W / ( m • K) . Of lightweight aggregate structure insulation concrete materials properties and microstructure of variation with air entraining agent .

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yunsen Wang ◽  
Jingping Qiu ◽  
Chao Zeng

It is a promising and effective method for waste treatment by using coal gangue to make lightweight aggregate concrete. However, lightweight aggregate concrete with low-density coal gangue ceramsite is prone to cracking during volume shrinkage, which limits its application in the construction industry. In an attempt to resolve the problem of cracking in shrinkage, this study investigated the effect of prewetting time and shrinkage reducing agents on shrinkage volume and concrete strength through a series of concrete shrinkage and strength tests. The experimental results show that shrinkage volume reduced at a prewetting time of 12 hrs or with a 2% addition of D-230 polyether amine reductant. With the optimal conditions of 12 hrs prewetting time and 2% addition of the reductant, the concrete shrinkage volume significantly decreased with a negligible impact on its strength. Appropriate amount of shrinkage reducing agent and adjustment of prewetting time of coal gangue ceramsite are necessary to reduce the shrinkage rate and improve the stability of the specimen. This is of great significance to wide application of lightweight aggregate concrete with coal gangue ceramsite.


1986 ◽  
Vol 13 (6) ◽  
pp. 741-751 ◽  
Author(s):  
R. Basset ◽  
S. M. Uzumeri

This paper summarizes an experimental investigation into the behaviour of high strength sand – lightweight concrete columns confined with rectangular ties. Fifteen reinforced and three unreinforced specimens were tested under monotonically increasing axial compression. Variables considered in this study were the longitudinal steel distribution and tie configuration, the tie steel spacing, the amount of tie steel, and the amount of longitudinal steel.The results indicated that unconfined high-strength lightweight aggregate concrete is a brittle material. The addition of lateral confining steel significantly improved the behaviour of this material, with a large amount of lateral steel resulting in very ductile behaviour. The tie configuration and resulting distribution of longitudinal steel contributed significantly to the confinement of concrete, with well-distributed steel resulting in improved behaviour. The ratio of specimen to cylinder concrete strength was observed to be 0.98, which is much higher than the commonly assumed value of 0.85.The test results were compared with results from selected theoretical confinement models. Based on the results of this investigation, existing models for concrete confinement give unconservative results for high-strength lightweight aggregate concrete and overestimate the ductility that can be achieved with this material. Key words: columns, confinement, ductility, high-strength concretes, lightweight aggregate concretes, reinforcement, stress–strain relationships, tests, ties, toughness.


2016 ◽  
Vol 8 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Jurga Šeputytė-Jucikė ◽  
Marijonas Sinica

The main objective of this study is to create a lightweight aggregate concrete (LWAC) with a low thermal conductivity coefficient using expanded glass (EG) aggregate, produced from waste glass or crushed expanded polystyrene waste, obtained by crushing waste packing tare of household appliances. Research related to the effects of the amount of Portland cement (PC) as well as EG aggregates and crushed expanded polystyrene waste on physical (density, thermal conductivity coefficient, water absorption and capillary coefficient) and mechanical (compressive strength) properties of LWAC samples are provided. Insulating LWAC based on a small amount of PC and lightweight EG aggregates and crushed expanded polystyrene waste, with especially low thermal conductivity coefficient values (from 0.070 to 0.098 W/ (m·K)) has been developed. A strong relationship between thermal conductivity coefficient and density of LWAC samples was obtained. The density of LWAC samples depending on the amount of PC ranged between 225 and 335 kg/m3. A partial replacement of EG aggregate by crushed expanded polystyrene waste, results in relative density decrease of LWAC samples. In LWAC samples the increased amount of PC results in increased compressive strength.


2021 ◽  
Author(s):  
Chaoming PANG ◽  
Xinxin MENG ◽  
Chunpeng ZHANG ◽  
Jinlong PAN

Abstract Shrinkage of foam concrete can easily cause cracking and thus makes it difficult for a manufacturer to maintain quality. The density of lightweight aggregate concrete is too high to meet specifications for lightweight and thermal insulation for wallboard. Two types of concrete with dry density in the range 1000–1200 kg/m3 for use in wallboard were designed and prepared using foam and lightweight aggregate. The properties of porous lightweight aggregate concrete with core-shell non-sintered lightweight aggregate were compared with sintered lightweight aggregate concrete along with several dimensions. The two aggregates were similar in particle size, density, and strength. The effects of each aggregate on the workability, compressive strength, dry shrinkage, and thermal conductivity of the lightweight concrete were analyzed and compared. Pore structures were determined by mercury intrusion porosimetry and X-ray computed tomography. Compressive strength ranged from 7.8 to 11.8 MPa, and thermal conductivity coefficients ranged from 0.193 to 0.219 W/m/K for both types of concrete. The results showed that the core-shell non-sintered lightweight aggregate bonded better with the paste matrix at the interface transition zone and had a better pore structure than the sintered lightweight aggregate concrete. Slump flow of the core-shell non-sintered lightweight aggregate concrete was about 20% greater than that of the sintered lightweight aggregate concrete, 28d compressive strength was about 10% greater, drying shrinkage was about 10% less, and thermal conductivity was less. Porous lightweight aggregate concrete using core-shell non-sintered lightweight aggregate performs well when used in wallboard because of its low density, high thermal insulation, and improved strength.


2011 ◽  
Vol 287-290 ◽  
pp. 1065-1069 ◽  
Author(s):  
Hsien Sheng Peng ◽  
How Ji Chen ◽  
Chao Wei Tang ◽  
Yu Ping Chen

Structural lightweight aggregate concrete (LWAC) members have demonstrated greater fire endurance periods than equivalent thickness members made with normal-weight aggregates. Superior performance is due to a combination of lower thermal conductivity, lower coefficient of thermal expansion, and the inherent thermal stability developed by aggregates that have been exposed temperature greater than 1050°C during preprocessing. Furthermore, LWAC exhibits relatively high thermal insulating value, of which the thermal conductivity can be half as much as that of ordinary normal-weight concrete (NWC). Therefore, the main objective of this paper is to implement fire resistance testing for structural and non-structural elements made of LWAC and NWC to assess and compare their fire behavior.


2021 ◽  
Vol 272 ◽  
pp. 02021
Author(s):  
Hao Lin ◽  
Liu Lei ◽  
Li Jian

In order to study the mechanical properties of the stud connectors in lightweight aggregate concrete (LWAC), the finite element software ABAQUS was used to establish the push test models of ordinary concrete and LWAC, respectively. Through parameter analysis of 21 models, the influence of different parameters on the shear performance of LWAC stud connector was studied. Among them, concrete strength, stud diameter and stud strength have strong effects. Compared with stud connector in ordinary concrete, the LWAC stud connector enters the elastoplastic working stage earlier, the ultimate slip is slightly larger, the ductility is better, and the shear capacity is about 11% lower. Regression analysis was performed on the finite element calculation results, and the method for shear bearing capacity calculation of the stud connectors in LWAC is given.


Sign in / Sign up

Export Citation Format

Share Document