Scale and Orientation Adaptive Moving Object Tracking in a Sequence of Imageries

2013 ◽  
Vol 660 ◽  
pp. 190-195
Author(s):  
Zi Cheng Ren ◽  
Jaeho Choi ◽  
M. Ahmed ◽  
Jae Ho Choi

Object tracking has been researched for many years as an important topic in machine learning, robot vision and many other fields. Over the years, various tracking methods are proposed and developed in order to gain a better tracking effect. Among them the mean-shift algorithm turns out to be robust and accurate compared other algorithms after different kinds of tests. But due to its limitations, the changes in scale and rotational motion of an object cannot be effectively processed. This problem occurs when the object of interest moves towards or away from the video camera. Improving over the previously proposed method such as scale and orientation adaptive mean shift tracking, which performs well with scaling change but not for the rotation, in this paper, the proposed method modifies the continuously adaptive mean shift tracking method so that it can handle effectively for changes in size and rotation in motion, simultaneously. The simulation results yield a successful tracking of moving objects even when the object undergoes scaling in size and rotation in motion in comparison to the conventional ones.

2010 ◽  
Vol 44-47 ◽  
pp. 3902-3906
Author(s):  
Jie Jia ◽  
Yong Jun Yang ◽  
Yi Ming Hou ◽  
Xiang Yang Zhang ◽  
He Huang

An object tracking framework based on adaboost and Mean-Shift for image sequence was proposed in the manuscript. The object rectangle and scene rectangle in the initial image of the sequence were drawn and then, labeled the pixel data in the two rectangles with 1 and 0. Trained the adaboost classifier by the pixel data and the corresponding labels. The obtained classifier was improved to be a 5 class classifier and employed to classify the data in the same scene region of next image. The confidence map including 5 values was got. The Mean-Shift algorithm is performed in the confidence map area to get the final object position. The rectangles of object and background were moved to the new position. The object rectangle was zoomed by 5 percent to adapt the object scale changing. The process including drawing rectangle, training, classification, orientation and zooming would be repeated until the end of the image sequence. The experiments result showed that the proposed algorithm is efficient for nonrigid object orientation in the dynamic scene.


2013 ◽  
Vol 13 (03) ◽  
pp. 1350012 ◽  
Author(s):  
LIWEN HE ◽  
YONG XU ◽  
YAN CHEN ◽  
JIAJUN WEN

Though there have been many applications of object tracking, ranging from surveillance and monitoring to smart rooms, object tracking is always a challenging problem in computer vision over the past decades. Mean Shift-based object tracking has received much attention because it has a great number of advantages over other object tracking algorithms, e.g. real time, robust and easy to implement. In this survey, we first introduce the basic principle of the Mean Shift algorithm and the working procedure using the Mean Shift algorithm to track the object. This paper then describes the defects and potential issues of the traditional Mean Shift algorithm. Finally, we summarize the improvements to the Mean Shift algorithm and some hybrid tracking algorithms that researchers have proposed. The main improvements include scale adaptation, kernel selection, on-line model updating, feature selection and mode optimization, etc.


2014 ◽  
Vol 513-517 ◽  
pp. 3265-3268
Author(s):  
Xiao Jing Zhang ◽  
Chen Ming Sha ◽  
Ya Jie Yue

Object tracking has always been a hot issue in vision application, its application area include video surveillance, human-machine, virtual reality and so on. In this paper, we introduce the Mean shift tracking algorithm, which is a kind of important no parameters estimation method, then we evaluate the tracking performance of Mean shift algorithm on different video sequences.


2017 ◽  
Author(s):  
Benjamin T. James ◽  
Brian B. Luczak ◽  
Hani Z. Girgis

ABSTRACTSequence clustering is a fundamental step in analyzing DNA sequences. Widely-used software tools for sequence clustering utilize greedy approaches that are not guaranteed to produce the best results. These tools are sensitive to one parameter that determines the similarity among sequences in a cluster. Often times, a biologist may not know the exact sequence similarity. Therefore, clusters produced by these tools do not likely match the real clusters comprising the data if the provided parameter is inaccurate. To overcome this limitation, we adapted the mean shift algorithm, an unsupervised machine-learning algorithm, which has been used successfully thousands of times in fields such as image processing and computer vision. The theory behind the mean shift algorithm, unlike the greedy approaches, guarantees convergence to the modes, e.g. cluster centers. Here we describe the first application of the mean shift algorithm to clustering DNA sequences. MeShClust is one of few applications of the mean shift algorithm in bioinformatics. Further, we applied supervised machine learning to predict the identity score produced by global alignment using alignment-free methods. We demonstrate MeShClust’s ability to cluster DNA sequences with high accuracy even when the sequence similarity parameter provided by the user is not very accurate.


2016 ◽  
Vol 348 ◽  
pp. 198-208 ◽  
Author(s):  
Youness Aliyari Ghassabeh ◽  
Frank Rudzicz

Sign in / Sign up

Export Citation Format

Share Document