Estimation of Lead Releasing Characteristics in Contaminated Agricultural Soils by Chelating Agents

2013 ◽  
Vol 664 ◽  
pp. 106-110
Author(s):  
Cheng Bin Xu ◽  
Yao Yao Li ◽  
Xue Kai Sun ◽  
Jie Bai

Lead (Pb) is a highly toxic element because of its accumulative and persistent character in the environment. Especially, the risks of their potential entry into the food chain and pollution of heavy metal in an agricultural system will threaten to human health. Songsan wastewater irrigation region, a big rice production area of Anshan, Liaoning province, was polluted by containments of heavy metals for more than 80 years. The total Pb concentration in polluted soil sample was higher than in natural soil (value of environmental standard ≤35 mg•kg-1). In the study, the two chelating agents (EDTA and DTPA) were used to release Pb from the polluted soil. On the basis of single extraction procedures of Pb with two extracting agents, we found that EDTA had a significantly higher chelating capacity than DTPA (P<0.05). In addition, among our researches on releasing kinetics of lead with two reagents, the results indicated that the equilibrium action time was about 16 h.

1977 ◽  
Vol 55 (10) ◽  
pp. 1762-1769 ◽  
Author(s):  
Meindert Booy ◽  
Thomas Wilson Swaddle

Aqueous H3NTA, H2MIDA, H2IDA, and their anions decompose under hydrothermal conditions (400–580 K) according to first order kinetics by successive decarboxylations, oxidation by O2 being unimportant except at the highest temperatures. In the presence of added H+, the species H4NTA+ and, to a lesser extent, H3MIDA+ (but not H3IDA+), provide significant decomposition pathways through elimination of a —CH2COO— group (deacetylation). For HnNTA(3−n)−, first order rate coefficients kn for decomposition are k0 = 4.5 × 10−7, k1 ∼ 1 × 10−6, k2 ∼ 7 × 10−5, k3 = 2.1 × 10−4, and k4 = 1.0 × 10−2 s1, at 503 K and ionic strength 2.0 m, the spread in rates being due to differences in ΔS* rather than ΔH*. H2MIDA and H2IDA are comparable in reactivity to H3NTA, while their anions are much less reactive than the NTA species of the same charge. The good thermal stability of aqueous NTA commends it as a reagent for boiler servicing and for decontamination of water-cooled nuclear reactors. A potentiometric method for the estimation of mono-, di-, and tribasic aminoacids in aqueous mixtures of these is described.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1815 ◽  
Author(s):  
Aleksandra Ukalska-Jaruga ◽  
Karolina Lewińska ◽  
Elton Mammadov ◽  
Anna Karczewska ◽  
Bożena Smreczak ◽  
...  

The aim of this study was to identify and examine the levels of organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) in soil collected from the surroundings of historical pesticide storage facilities on former agricultural aerodromes, warehouses, and pesticide distribution sites located in the most important agricultural regions in Azerbaijan. The conducted research included determination of three groups of POPs (occurring together), in the natural soil environment influenced for many years by abiotic and biotic factors that could have caused their transformations or decomposition. In this study, soil samples were collected in 21 georeferenced points located in the administrative area of Bilasuvar, Saatly, Sabirabad, Salyan and Jalilabad districts of Azerbaijan. Soil chemical analysis involved determination of organochlorine compounds (OCP): hexachlorocyclohexanes (HCHs) (three isomers α-HCH, β-HCH and γ-HCH) and dichlorodiphenyltrichloroethanes (DDTs) (six congeners 2,4′DDT; 4,4′DDT; 2,4′DDE; 4,4′DDE; 2,4′DDE; and 4,4′DDE); polycyclic aromatic hydrocarbons (PAHs): 16 compounds from the United States Environmental Protection Agency US EPA list and, PCBs (seven congeners identified with the following IUPAC numbers: 28, 52, 101, 118, 138, 153, and 180). Our research showed that OCPs reached the highest concentration in the studied areas. The total concentrations of OCPs ranged from 0.01 to 21,888 mg∙kg−1 with significantly higher concentrations of Σ6DDTs (0.01 μg kg−1 to 21880 mg kg−1) compared to ΣHCH (0.14 ng kg−1 to 166.72 µg kg−1). The total concentrations of PCBs in the studied soils was varied from 0.02 to 147.30 μg·kg−1 but only PCB138 and PCB180 were detected in all analyzed samples. The concentrations of Σ16 PAHs were also strongly diversified throughout the sampling areas and ranged from 0.15 to 16,026 mg kg−1. The obtained results confirmed that the agricultural soils of Azerbaijan contained much lower (up to by three orders of magnitude) concentrations of PCBs and PAHs than DDT. It is supported by the fact that PCBs and PAHs were not directly used by agriculture sector and their content results from secondary sources, such as combustion and various industrial processes. Moreover, the high concentrations of PAHs in studied soils were associated with their location in direct neighborhood of the airport, as well as with accumulation of contaminants from dispersed sources and long range transport. The high concentrations of pesticides confirm that deposition of parent OCPs have occurred from obsolete pesticide landfills.


Fuel ◽  
1984 ◽  
Vol 63 (11) ◽  
pp. 1511-1514 ◽  
Author(s):  
Hyun S. Yang ◽  
H.Y. Sohn

1929 ◽  
Vol 12 (3) ◽  
pp. 391-400 ◽  
Author(s):  
E. S. Castle

1. A single-celled, elongating sporangiophore of Phycomyces responds to a sufficient increase in intensity of illumination by a brief increase in growth rate. This is the "light-growth response" of Blaauw. 2. The reaction time is compound, consisting of an exposure period and a latent period (this comprising both the true latent period resulting from photochemical action and any "action time" necessary for the response). During the latter period the plant may be in darkness, responding nevertheless at the end of the latent period. 3. Both light adaptation and dark adaptation occur in the sporangiophore. The kinetics of dark adaptation can be accounted for on the basis of a bimolecular reaction, perhaps modified by autocatalysis. Attention is called to the bimolecular nature of the "dark" reaction in all other photosensory systems that have been studied, in spite of the diversity of the photosensitive substances themselves and of the different forms of the responses to light.


Sign in / Sign up

Export Citation Format

Share Document