Adaptive Control with Supraunitary Relative Degree for the DC Electrical Machine

2013 ◽  
Vol 677 ◽  
pp. 480-484
Author(s):  
Marian Gaiceanu ◽  
Cristian Eni ◽  
Mihaita Coman

In order to obtain an appropriate control for the electrical drive systems the real parameters values must be known accurately. Moreover, due to the parametric and structural uncertainty of the DC drive system, an adaptive control method is necessary. Therefore, a new model reference adaptive control (MRAC) for DC drives is proposed in this paper. MRAC ensures on-line adjustment of the control parameters with DC machine parameter variation. The adaptive control developed in this paper assures the asymptotic cancellation of the tracking error, fast and smooth responses of the DC drive without knowing a priory any information about the DC drive parameters. The simulation results show the validity of the proposed solution.

2021 ◽  
Vol 336 ◽  
pp. 03005
Author(s):  
Xinchao Sun ◽  
Lianyu Zhao ◽  
Zhenzhong Liu

As a simple and effective force tracking control method, impedance control is widely used in robot contact operations. The internal control parameters of traditional impedance control are constant and cannot be corrected in real time, which will lead to instability of control system or large force tracking error. Therefore, it is difficult to be applied to the occasions requiring higher force accuracy, such as robotic medical surgery, robotic space operation and so on. To solve this problem, this paper proposes a model reference adaptive variable impedance control method, which can realize force tracking control by adjusting internal impedance control parameters in real time and generating a reference trajectory at the same time. The simulation experiment proves that compared with the traditional impedance control method, this method has faster force tracking speed and smaller force tracking error. It is a better force tracking control method.


2012 ◽  
Vol 77 ◽  
pp. 96-102
Author(s):  
Riccardo Russo ◽  
Mario Terzo

The paper describes an experimental/theoretical activity that involves a magnetorheological fluid brake (MRFB). The variability affecting the plant parameters suggests the employment of a model reference adaptive control finalized to regulate the braking torque. This feedback control method is able to minimize the tracking error in presence of a plant characterized by a known dynamics and uncertain parameters. Numerical simulations have been carried out and the obtained results confirm the goodness of the proposed approach.


2011 ◽  
Vol 383-390 ◽  
pp. 79-85
Author(s):  
Dong Yuan ◽  
Xiao Jun Ma ◽  
Wei Wei

Aiming at the problems such as switch impulsion, insurmountability for influence caused by nonlinearity in one tank gun control system which adopts double PID controller to realize the multimode switch control between high speed and low speed movement, the system math model is built up; And then, Model Reference Adaptive Control (MRAC) method based on nonroutine reference model is brought in and the adaptive gun controller is designed. Consequently, the compensation of nonlinearity and multimode control are implemented. Furthermore, the Tracking Differentiator (TD) is affiliated to the front of controller in order to restrain the impulsion caused by mode switch. Finally, the validity of control method in this paper is verified by simulation.


Inventions ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 3
Author(s):  
Wenping Cao ◽  
Ning Xing ◽  
Yan Wen ◽  
Xiangping Chen ◽  
Dong Wang

Wind energy conversion systems have become a key technology to harvest wind energy worldwide. In permanent magnet synchronous generator-based wind turbine systems, the rotor position is needed for variable speed control and it uses an encoder or a speed sensor. However, these sensors lead to some obstacles, such as additional weight and cost, increased noise, complexity and reliability issues. For these reasons, the development of new sensorless control methods has become critically important for wind turbine generators. This paper aims to develop a new sensorless and adaptive control method for a surface-mounted permanent magnet synchronous generator. The proposed method includes a new model reference adaptive system, which is used to estimate the rotor position and speed as an observer. Adaptive control is implemented in the pulse-width modulated current source converter. In the conventional model reference adaptive system, the proportional-integral controller is used in the adaptation mechanism. Moreover, the proportional-integral controller is generally tuned by the trial and error method, which is tedious and inaccurate. In contrast, the proposed method is based on model predictive control which eliminates the use of speed and position sensors and also improves the performance of model reference adaptive control systems. In this paper, the proposed predictive controller is modelled in MATLAB/SIMULINK and validated experimentally on a 6-kW wind turbine generator. Test results prove the effectiveness of the control strategy in terms of energy efficiency and dynamical adaptation to the wind turbine operational conditions. The experimental results also show that the control method has good dynamic response to parameter variations and external disturbances. Therefore, the developed technique will help increase the uptake of permanent magnet synchronous generators and model predictive control methods in the wind power industry.


2013 ◽  
Vol 300-301 ◽  
pp. 1505-1512 ◽  
Author(s):  
József Kázmér Tar ◽  
Imre J. Rudas ◽  
János F. Bitó ◽  
Krisztián Kósi

The Model Reference Adaptive Controllers (MRAC) of dynamic systems have the purpose of simulating the dynamics of a reference system for an external control loop while guaranteeing precise tracking of a prescribed nominal trajectory. Such controllers traditionally are designed by the use of some Lyapunov function that can guarantee global and sometimes asymptotic stability but pays only little attention to the primary design intent, has a great number of arbitrary control parameters, and also is a complicated technique. The Robust Fixed Point Transformations (RFPT) were recently introduced as substitutes of Lyapunov’s technique in the design of adaptive controllers including MRACs, too. Though this technique guarantees only stability (neither global nor asymptotic), it works with a very limited number of control parameters, directly concentrates on the details of tracking error relaxation, and it is very easily can be designed. In the present paper this novel technique is applied for the MRAC control of a 3 Degrees-of-Freedom (DoF) aeroelastic wing model that is an underactuated system the model-based control of which attracted much attention in the past decades. To exemplify the efficiency of the method via simulations it is applied for PI and PID-type prescribed error relaxation for a reference model the parameters of which considerably differ from that of the actual system.


1985 ◽  
Vol 107 (2) ◽  
pp. 123-131 ◽  
Author(s):  
Z. Prucz ◽  
T. T. Soong ◽  
A. Reinhorn

An efficient pulse control method for insuring safety of simple mechanical systems is developed and its sensitivity to the excitation frequency content and to various control parameters is studied. The control algorithm, consisting of applying pulse forces in a feedback fashion, is designed to insure that maximum system response is limited to safe values at all times. It is shown that the proposed algorithm is simple to implement and is efficient in controlling peak response in terms of on-line computation and pulse energy required. The technique is illustrated and analyzed for a single-degree-of-freedom linear system.


2014 ◽  
Vol 875-877 ◽  
pp. 2030-2035 ◽  
Author(s):  
Marian Gaiceanu ◽  
Cristian Eni ◽  
Mihaita Coman ◽  
Romeo Paduraru

Due to the parametric and structural uncertainty of the DC drive system, an adaptive control method is necessary. Therefore, an original model reference adaptive control (MRAC) for DC drives is proposed in this paper. MRAC ensures on-line adjustment of the control parameters with DC machine parameter variation. The proposed adaptive control structure provides regulating advantages: asymptotic cancellation of the tracking error, fast and smooth evolution towards the origin of the phase plan due to a sliding mode switching k-sigmoid function. The reference model can be a real strictly positive function (the tracking error is also the identification error) as its order is relatively higher than one degree. For this reason, the synthesis of the adaptive control will use a different type of error called augmented or enhanced error. The DC machine with separate excitation is fed at a constant flux. This adaptive control law assures robustness to external perturbations and to unmodelled dynamics.


Sign in / Sign up

Export Citation Format

Share Document