Experimental Investigation of Neutron Irradiation Effect on Silica-Based Erbium-Doped Fiber Amplifier

2013 ◽  
Vol 679 ◽  
pp. 59-62
Author(s):  
Jing Ma ◽  
Qing Feng Liu ◽  
Li Ying Tan

This paper studied the influence of neutron irradiation on the characteristics of 980nm pumped erbium-doped fiber amplifier(EDFA). After 7 days neutron irradiation, with the total fluence of 1.5×1013n/cm2, radiation induced loss changed little compared with pre-irradiation, maximum difference of single signal and WDM signal between pre-irradiation and post- irradiation are 0.5dB and 0.6dB, respectively. EDFA affected by neutron irradiation got less loss when the input signal power is higher.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mahmoud M. A. Eid ◽  
Ahmed Nabih Zaki Rashed ◽  
Ehab Salah El-din

AbstractAim and scope of this study is to simulate the performance signature of optical inter satellite links based booster Erbium doped fiber amplifier (EDFA) and receiver preamplifiers. The study is simulated to demonstrated the effect of changing the propagation distances between satellites spacing based on the booster EDFA and receiver preamplifiers. Signal power amplitude, Max. Q factor, and min bit error rate are investigated against the input power variations.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
S. Semmalar ◽  
S. Malarkkan

The scope of this paper is to analyze the output signal power with pump power and length variation in cascaded EDFA simulation model performance. This paper describes the simulation model of Erbium-Doped Fiber Amplifier (EDFA) of variable lengths (10 m, 50 m, and 120 m) with dual pumping techniques (dual forward pumping with two 980 nm wavelengths, dual forward and backward pumping with two 980 nm wavelengths) and Tri-pumping techniques. The simulation models consist of input source and pump power coupled by WDM coupler which gives optimized signal power in the above-mentioned simulation model. The simulation model consists of source with multiple wavelengths (1520 nm–1618 nm), pumping source with the wavelength 980 nm, isolator, and filter. The resulting models accurately represent EDFA optimized output signal power. Simulation results show that choosing careful fiber length 120 m and pump power 1 W in dual pumping provided 0.07 W optimized output signal power compared to other pumping techniques.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 251
Author(s):  
Siti Azlida Ibrahim ◽  
Amilia Mansoor ◽  
Tuan Ainin Sofea Tuan Mohd Marzuki ◽  
Nasr Y. M. Omar ◽  
Hairul Azhar Abdul Rashid

Background: One way to reduce the length of the gain medium in Erbium-Doped Fiber Amplifier (EDFA) is by doping the fiber core with a high concentration of Erbium. However, this method caused ion clustering effects, which limits the EDFA’s efficiency.  In this research, the use of Gallium as a new co-dopant in erbium-doped silica fiber is explored. Methods: The new fiber, namely Gallium co-doped Erbium fiber (Ga-EDF), is used as a gain medium in an optical fiber amplifier setup. A 2-meter length of the Ga-EDF fiber was used in a single pass configuration with a forward pumping scheme at 150 mW pump power. The Ga-EDF amplifier's gain and noise figure while pumping at 980 nm and 1480 nm were compared. The amplifier's performance was evaluated as the input signal power varied between -30 dBm to 3 dB, over the wavelength range of 1520 nm to 1580 nm. Results: The 980 nm-pumped Ga-EDF amplifier achieved the maximum small-signal gain of 22.45 dB and the corresponding noise figure of 5.71 dB at the input signal wavelength of 1535 nm. Meanwhile, the 1480 nm-pumped Ga-EDF amplifier attained the maximum small-signal gain of 20.83 dB and the corresponding noise figure of 5.09 dB at the input signal wavelength of 1550 nm. At the input signal power below -20 dBm and the wavelength range 1520 nm to 1547 nm, the Ga-EDF performs better when pumped at 980 nm. Their performance is comparable at the input signal wavelength range between 1547 nm to 1580 nm. At the input signal power above -20 dBm, the 1480 nm-pumped Ga-EDF outperformed the 980 nm-pumped amplifier. Conclusions: The overall performance indicates that the gain saturation point of the 1480 nm-pumped amplifier is higher than the 980 nm-pumped.


2007 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
PHUNG QUOC BAO ◽  
LE HONG SON

We present a rate equation approach (REA) based on the propagation equations in single-mode Erbium-Doped Fiber Amplifiers (EDFAs). Special attention is paid to the gain and the amplified spontaneous emission (ASE) noise as functions of position including the effects of some main parameters such as pump power, signal power.


2007 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
PHUNG QUOC BAO ◽  
LE HONG SON

We present a rate equation approach (REA) based on the propagation equations in single-mode Erbium-Doped Fiber Amplifiers (EDFAs). Special attention is paid to the gain and the amplified spontaneous emission (ASE) noise as functions of position including the effects of some main parameters such as pump power, signal power.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 251
Author(s):  
Siti Azlida Ibrahim ◽  
Amilia Mansoor ◽  
Tuan Ainin Sofea Tuan Mohd Marzuki ◽  
Nasr Y. M. Omar ◽  
Hairul Azhar Abdul Rashid

Background: One way to reduce the length of the gain medium in Erbium-Doped Fiber Amplifier (EDFA) is by doping the fiber core with a high concentration of Erbium. However, this method caused ion clustering effects, which limits the EDFA’s efficiency.  In this research, the use of Gallium as a new co-dopant in erbium-doped silica fiber is explored. Methods: The new fiber, namely Gallium co-doped Erbium fiber (Ga-EDF), is used as a gain medium in an optical fiber amplifier setup. A 2-meter length of the Ga-EDF fiber was used in a single pass configuration with a forward pumping scheme at 150 mW pump power. The Ga-EDF amplifier's gain and noise figure while pumping at 980 nm and 1480 nm were compared. The amplifier's performance was evaluated as the input signal power varied between -30 dBm to 3 dBm, over the wavelength range of 1520 nm to 1580 nm. Results: The 980 nm-pumped Ga-EDF amplifier achieved the maximum small-signal gain of 22.45 dB and the corresponding noise figure of 5.71 dB at the input signal wavelength of 1535 nm. Meanwhile, the 1480 nm-pumped Ga-EDF amplifier attained the maximum small-signal gain of 20.83 dB and the corresponding noise figure of 5.09 dB at the input signal wavelength of 1550 nm. At the input signal power below -20 dBm and the wavelength range 1520 nm to 1547 nm, the Ga-EDF performs better when pumped at 980 nm. Their performance is comparable at the input signal wavelength range between 1547 nm to 1580 nm. At the input signal power above -20 dBm, the 1480 nm-pumped Ga-EDF outperformed the 980 nm-pumped amplifier. Conclusions: The overall performance indicates that the gain saturation point of the 1480 nm-pumped amplifier is higher than the 980 nm-pumped.


Author(s):  
Nelidya Md. Yusoff ◽  
A. H. Sulaiman ◽  
Sumiaty Ambran ◽  
Azura Hamzah ◽  
M. A. Mahdi

We have demonstrated the performance improvement of L-band hybrid remote Erbium-doped fiber amplifier by introducing a phase modulator to suppress the stimulated Brilloiun scattering (SBS) effect in the transmission. The transmission gain has improved by 12.65dB while the noise figure has reduced by 47.1dB when 0dBm signal power is generated at 1590.05nm wavelength. Furthermore, the optical signal-to-noise ratio has improved from 7.81dB to 29.72dB when the signal power is varied from -30dBm to 0dBm. By implementing a phase modulator to the input signal somehow able to produce better performance regarding gain, noise figure and optical signal-to-noise ratio, especially at the higher signal power as the gain, has been transferred to the Stokes signal and the amplified signal.


Sign in / Sign up

Export Citation Format

Share Document