A Multipath Cancellation Method Based on TK Operator for BOC Signals

2013 ◽  
Vol 680 ◽  
pp. 454-459
Author(s):  
Zhong Liang Deng ◽  
Lei Yang ◽  
Lu Yin ◽  
Yue Xi

The new generation of global navigation satellite systems will apply binary offset carrier (BOC) modulation technique, which can efficiently split the spectrums of navigation signals using the same frequency so as to reduce the interferences among different systems. But the autocorrelation function of BOC modulated signals has the drawback of multimodality, so it’s very hard to synchronize to the right peak when acquiring and tracking signals, especially under low SNR circumstances, which can decrease the positioning accuracy and even lead to wrong positioning results. Meanwhile, if there are multipath signals mixed in the receiving signal, the autocorrelation curve will be greatly distorted, and the number of side-peak will also increase exaggeratedly, which could deteriorate the situation mentioned above. A multipath cancellation method based on TK (Teager-Kaiser) operator is proposed in this article, which could not only detect the right peak in the autocorrelation curve, but also eliminate all the other multipath signals. As a result, this method could avoid the false lock of code phase and guarantee the high precision fix results.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Fang Liu ◽  
Yongxin Feng

A new inhibition side peak acquisition (ISPA) algorithm is proposed for binary offset carrier (BOC) modulated signals, which will be utilized in global navigation satellite systems (GNSS). We eliminate all side peaks of the BOC correlation function (CF) by structuring special sequences composed of PRN code and cycle rectangular sequences. The new algorithm can be applied to both generic sine- and cosine-phased BOC signals, as well as to all modulation orders. Theoretical and simulation results demonstrate that the new algorithm can completely eliminate the ambiguity threat in the acquisition process, and it can adapt to lower SNR. In addition, this algorithm is better than the traditional algorithms in acquisition performance and inhibition side peak ability.


2018 ◽  
Vol 8 (11) ◽  
pp. 2226 ◽  
Author(s):  
Zhijun Liu ◽  
Baiyu Li ◽  
Xiangwei Zhu ◽  
Lixun Li ◽  
Guangfu Sun

The binary offset carrier (BOC) modulation, which has been adopted in modern global navigation satellite systems (GNSS), provides a higher spectral compatibility with BPSK signals, and better tracking performance. However, the autocorrelation function (ACF) of BOC signals has multiple peaks. This feature complicates the acquisition process, since a smaller time searching step is required, which results in longer searching time or greater amounts of hardware resources. Another problem is the high Nyquist frequency, which leads to high computational complexity and power consumption. In this paper, to overcome these drawbacks, the band-pass sampling technique for multiple signals is introduced to BOC signals. The sampling frequency can be reduced significantly. Furthermore, the ACF of the sampled signal has only two secondary peaks, so that the code phase can be searched with a larger searching step. An acquisition structure base on dual-loop is proposed, to completely eliminate the ambiguity and compensate the subcarrier Doppler. The acquisition performance and the computational complexity are also analysed.


2018 ◽  
Vol 7 (4.38) ◽  
pp. 1205
Author(s):  
Vladimir Petrovich Pashintsev ◽  
Igor Anatolyevich Kalmykov ◽  
Aleksandr Pavlovich Zhuk ◽  
Dmitrii Viktorovich Orel ◽  
Elena Pavlovna Zhuk

Increased number of threats to user interface of navigation signals, mainly in the form of suppression of navigation signals by jamming as well as navigation signal spoofing by false signals, assumes development of counter measures including improvement of structure security of navigation signals on the basis of stochastic use of code sequences which are ranging codes. This article proves the required number of unique discrete code sequences which can improve structure security of navigation signal in global navigation satellite system upon their stochastic use. Properties of discrete quasi-orthogonal code sequences are estimated which are used and proposed for use in global navigation satellite systems with channel code division, they are compared with optimum values of code balancing, number of element series and lower bounds of maximum lateral peaks of aperiodic auto-correlation function and maximum peaks of aperiodic mutual-correlation function. The experimental results show that the minimum values of the considered correlation functions of discrete quasi-orthogonal code sequences of known global navigation satellite systems exceed the lower bound by 3–6 times. The performances of code balancing and element series of discrete quasi-orthogonal code sequences of the known global navigation satellite systems satisfy in average the allowable intervals. The number of source lines of discrete quasi-orthogonal code sequences of the known global navigation satellite systems is significantly lower than their umber required for improvement of structure security of navigation signal based on their stochastic use. On the basis of the revealed drawbacks of the known discrete quasi-orthogonal code sequences, the necessity to develop new methods is substantiated allowing to obtain their required number together with statistic properties comparable with the best values of discrete quasi-orthogonal code sequences applied as navigation signals in global navigation satellite systems.  


2017 ◽  
Vol 70 (5) ◽  
pp. 1153-1169
Author(s):  
Fang Liu ◽  
Yongxin Feng

Binary Offset Carrier (BOC) modulation signals have been applied in Global Navigation Satellite Systems (GNSS) because they offer a higher positioning accuracy and higher multipath rejection. However, there is a drawback in that the autocorrelation functions have multiple side peaks, meaning that this technique also leads to the large main peak estimation error problem and a low correlation decision efficiency problem. In this paper, we propose a new Main Peak Extraction (MPE) method for high-order BOC signals to solve these problems. In the new method, the synthesis cross-correlation function is established, and the geometry graph is formatted to calculate the estimation main peak. We eliminate all side peaks and improve the main peak phase estimation precision under the condition that the sub-carrier phase is offset. The results of the simulation demonstrate that the new method can achieve better main peak decision efficiency, side peak cancellation ability and phase estimation performance than traditional methods.


2015 ◽  
Vol 68 (4) ◽  
pp. 769-783 ◽  
Author(s):  
Suelynn Choy ◽  
Ken Harima ◽  
Yong Li ◽  
Mazher Choudhury ◽  
Chris Rizos ◽  
...  

The Japanese Quasi-Zenith Satellite System (QZSS) is a regional satellite navigation system capable of transmitting navigation signals that are compatible and interoperable with other Global Navigation Satellite Systems (GNSS). In addition to navigation signals, QZSS also transmits augmentation signals, e.g. the L-band Experimental (LEX) signal. The LEX signal is unique for QZSS in delivering correction messages such as orbits and clock information that enable real-time Precise Point Positioning (PPP). This study aims to evaluate the availability of the LEX signal as well as the quality of the broadcast correction messages for real-time PPP applications. The system is tested in both static and kinematic positioning modes. The results show that the availability of the LEX signal is 60% when the QZSS satellite elevation is at 30° and above 90% when the satellite is above 40° elevation. Centimetre-level position accuracy can be obtained for static PPP processing after two hours of convergence using the current MADOCA-LEX (Multi-GNSS Advanced Demonstration of Orbit and Clock Analysis) correction messages transmitted on the LEX signal; and decimetre-level point positioning accuracy can be obtained for kinematic PPP processing.


Author(s):  
Власов ◽  
Vladimir Vlasov ◽  
Мактас ◽  
Boris Maktas ◽  
Богумил ◽  
...  

The textbook outlines the topics included in the "RPD 3+" educational program, including: - technology of satellite navigation to monitor and control the movement of road transport; - positioning technology for road transport; - technology of forming and processing of navigation signals of GLONASS and GPS global navigation satellite systems; - comparative characteristics of global navigation satellite systems GLONASS and GPS; - the time dimension in satellite navigation system. The influence of the receiver’s clock error on the accuracy of an object location measurement.


Sign in / Sign up

Export Citation Format

Share Document