Optimze the Structure of Impeller for Stirred Bioreactor

2013 ◽  
Vol 694-697 ◽  
pp. 148-153 ◽  
Author(s):  
Li Kuan Zhu ◽  
Bo Yan Song ◽  
Zhen Long Wang ◽  
Yu Kui Wang

This paper mainly makes comparative analysis on four main types of blade in stirred bioreactor by Computational Fluid Dynamics(CFD) simulation. Firstly we establish simulation method suited for stirred bioreactor, then simulate the velocity and shear force of flow field in the bioreactor. No matter from flow field mixing or shear force aspect, Elephant Ear blades is the most suitable for cell large scale culture. At last, it optimizes the installation method and angle of Elephant Ear blades. It concludes that anticlockwise rotation and 45°installation angle is the optimum.

2012 ◽  
Vol 621 ◽  
pp. 196-199
Author(s):  
Shui Ping LI ◽  
Ya Li Yuan ◽  
Lu Gang Shi

Numerical simulation method of the internal flow field of fluid machinery has become an important technology in the study of fluid machinery design. In order to obtain a high-performance cement slurry mixer, computational fluid dynamics (CFD) techniques are used to simulate the flow field in the mixer, and the simulation results are studied. According to the analysis results, the structural parameters of the mixer are modified. The results show the mixer under the revised parameters meet the design requirements well. So CFD analysis method can shorten design period and provide valuable theoretical guidance for the design of fluid machinery.


2021 ◽  
Vol 2097 (1) ◽  
pp. 012005
Author(s):  
Haifei Zhuang ◽  
Mingming Liu ◽  
Yongding Wu

Abstract Regarding wear issues of a dredge pump’s impeller as a cutter suction dredger transports medium coarse sand slurry, blades of the D850 dredge pump are modified and optimized, which extends the distance from the blade inlet root to the impeller suction and avoids damages of the impeller suction anti-wear ring. Analyses via computational fluid dynamics (CFD) simulation show that the head and the efficiency after blade modification have little changes compared with before optimization in the construction flow range of 10000-12000 m3/h under coarse sand condition. While it improves the flow field of impeller’s channels, decreases the vortex at the inlet root of the blades, ensures more uniform distribution of the solid particles. Meanwhile, this is beneficial to reductions of the channels’ wears. Applications from constructions show some improvements in the wears of the blade root. Through the construction data comparison, after replacing the modified impeller, dredging productivity will be increased by 15.1% and the fuel consumption per 10000 m3 will be then reduced by 11.5%.


2013 ◽  
Vol 803 ◽  
pp. 54-59
Author(s):  
Zhi Qun Pan ◽  
Xu Bin Zhang ◽  
Jing Tang ◽  
Wang Feng Cai

Computational Fluid Dynamics (CFD) was used to simulate the flow field of gas-liquid Taylor flow in circular capillaries. The separate influence of gas bubble velocityVb,Taylor unit lengthLUC, film lengthLfilmand liquid film thicknessδfilmon both the liquid slug velocityVx,topand film velocityVx,filmwere investigated. The values ofVx,topare mainly dependent onVbandδfilmwhileVx,filmrelies on all the four parameters.


Author(s):  
Tomáš Radnic ◽  
Jindřich Hála ◽  
Martin Luxa ◽  
David Šimurda ◽  
Jiří Fürst ◽  
...  

Focus of this paper is aerodynamic investigation of tie-boss stabilization devices for extremely long rotor blades. This investigation covered measurements on multiple blade cascades and computational fluid dynamics (CFD) simulation of the flow past these cascades. Conclusions were drawn from results of the measurements and CFD and from the knowledge of prior investigation of the used blade cascade. Main focus of this paper is to describe influence of a tie-boss stabilization device on flow field in interblade channel. Tie-boss with more massive shape proved to cause lesser losses, while tie-boss with a tailored trailing edge showed lesser influence on flow turning.


Author(s):  
Tri Admono ◽  
Yoyon Ahmudiarto ◽  
Amma Muliya Romadoni ◽  
Iman Abdurahman ◽  
Agus Salim ◽  
...  

Strut is used in vertical axis wind turbine (VAWT) to restraint the framework. In this study, struts are analyzed to show the pressure losses in VAWT. ANSYS computational fluid dynamics (CFD) software is used to investigate triangle strut in VAWT. This study aims to show a CFD simulation of struts, which affects the aerodynamic of VAWT. In CFD software, the aerodynamic of VAWT can be analyzed in terms of pressure losses in the struts. The simulation method starts by making a struts model, then meshing and setting up ANSYS's boundary conditions. The last iteration runs in ANSYS until convergence. Our results show the percentage of pressure losses with the variation of the angle of wind 0°, 20°, 40°, and 60° are 0.67 %, 0.52 %, 0.48 %, and 0.52 %. The effect of triangle strut in VAWT did not affect the wind flow to the VAWT blade. The results also indicated that the triangle strut could be applied in the multi-stage of VAWT system.


2020 ◽  
Vol 10 (22) ◽  
pp. 8304
Author(s):  
Chenglong Zhou ◽  
Ming Chen

In this paper, a computational fluid dynamics (CFD) simulation method based on the polyhedral nested grid is developed. By comparing the simulation and test results of the hovering flow field of the Caradonna–Tung rotor, the forward flight flow field of the AH-1G rotor, the interference flow field of the Robin rotor/fuselage, and the hovering and forward flight flow field of a coaxial rotor, it is proven that the method proposed in this paper can achieve high calculation accuracy under various working conditions. The dual time-stepping method is used for the transient simulation, and the Spalart–Allmaras (S-A) turbulence model, which is widely used in aviation, is adopted in the simulation.


2013 ◽  
Vol 706-708 ◽  
pp. 1237-1240
Author(s):  
Xu Guang Sun ◽  
Chang Hai Wang ◽  
Cheng Long Feng ◽  
Kai Qiao

This paper presents a computational fluid dynamics (CFD) simulation research for the interior flow field of laminar cooling during hot strip mills. Based on analysis of the flow field, the interior model of cooling is designed precisely, and the result establishes foundation for improving the control precision of cooling control system.


2008 ◽  
Vol 13-14 ◽  
pp. 23-28 ◽  
Author(s):  
T. Spalton ◽  
Rachel A Tomlinson ◽  
A.E. Garrard ◽  
S.B.M. Beck

An investigation into three dimensional fluid flow has been conducted which combines the use of Computational Fluid Dynamics (CFD) simulations with the experimental phenomenon of Streaming Birefringence. A versatile flow channel was designed and built for use in conjunction with a circular polariscope. The experimental liquid used was an aqueous solution of a dye, commercially known as Milling Yellow NGS with the addition of Sodium Chloride. To extract the flow fields, six image phase stepping photoelasticity was used over backward and forward steps, and flows around a cylinder, and full-field fringe data were obtained. This method needs laminar flow regimes and the Reynolds number of the flow was around 10. To allow direct comparisons of the CFD solutions with the optical results, a macro (UDF) was written to interpret the flow field results from a (FLUENT6) CFD simulation. This integrated the shear stresses across the flow field and banded the results into fringes. A good correlation between the simulated fringes and the shearstrain rate was obtained from these observations.


Sign in / Sign up

Export Citation Format

Share Document