Hardware Design of a Planar Platform for Naro-CMM

2013 ◽  
Vol 706-708 ◽  
pp. 1146-1149
Author(s):  
Hui Zhi Sun

Nanometer three Coordinate Measuring Machine (Naro-CMM) has got fast development especially in the advancement of modern technology. Platform is an important part of the Naro-CMM, paper puts forward a new way to drive platform. “Planar” mode is adopted, and the power module is designed based on L6234PD, the experimental results express that the positioning accuracy of the platform reaches nanometer accuracy. So the drive method satisfied the demand of this platform’s movement.

Author(s):  
Chuan Yang ◽  
Qiang Zhao ◽  
Yu-Long Zhao ◽  
Wei-Xuan Jing

In order to measure the microcosmic profiles of ultra-smooth surfaces, a high-accuracy noncontact micro-Coordinate Measuring Machine (micro-Coordinate Measuring Machine, micro-CMM) is developed in this paper. The working table of this measurement device is located by a macro-micro dual-drive system. A closed-loop control system, which is composed by a laser interferometer and stepper motors, is adopted to improve the positioning accuracy of the macro-positioning stage. The experimental results show that the positioning accuracy of this system is obviously improved and satisfies the positioning requirement of the macro-positioning stage. Because the positioning accuracy of the flexure-based micro-positioning stage can not satisfy the design requirement under the control of the traditional PID control, A PID control system based on Adaptive Neural-Fuzzy Inference is proposed to improve the control accuracy of the micro-positioning stage. The experimental results show that this system can improve the positioning accuracy of the micro-positioning stage, and basically meets the requirement of the design.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1715
Author(s):  
Yi Hu ◽  
Yuyi Zhan ◽  
Liang Han ◽  
Penghao Hu ◽  
Bing Ye ◽  
...  

Nowadays, integrated joint modules are increasingly adopted in manipulators for their advantages of high integration, miniaturization and high repeatability positioning accuracy. The problem of generally low absolute positioning accuracy (namely angle measurement accuracy) must be solved before they can be introduced into the self-driven articulated arm coordinate measuring machine which is under study in our laboratory. In this study, the sources of joint module’s angle error were analyzed and the error model based on harmonic analysis was established. Two integrated joint modules were calibrated on the self-designed calibration platform and the model parameters were deduced, respectively. The angle error was then compensated in the experiments and the results demonstrated that the angle error of the joint modules was reduced by 82.03% on average. The established angle error model can be effectively applied into the self-driven articulated arm coordinated measuring machine.


2013 ◽  
Vol 5 (4) ◽  
Author(s):  
Jie Li ◽  
Lian-Dong Yu ◽  
Jing-Qi Sun ◽  
Hao-Jie Xia

The typical nonorthogonal coordinate measuring machine is the portable coordinate measuring machine (PCMM), which is widely applied in manufacturing. In order to improve the measurement accuracy of PCMM, structural designing, data processing, mathematical modeling, and identification of parameters of PCMM, which are essential for the measurement accuracy, should be taken into account during the machine development. In this paper, a kind of PCMM used for detecting the crucial dimension of automobile chassis has been studied and calibrated. The Denavit–Hartenberg (D–H) kinematic modeling method has often been used for modeling traditional robot, but the D–H error representation is ill-conditioned when it is applied to represent parallel joints. A modified four-parameter model combined with D–H model is put forward for this PCMM. Based on the kinematic model, Gauss–Newton method is applied for calibrating the kinematic parameters. The experimental results indicate the improvement of measuring accuracy and the effectiveness of the PCMM based on the proposed method.


1995 ◽  
Vol 117 (4) ◽  
pp. 610-618 ◽  
Author(s):  
S. D. Jones ◽  
A. Galip Ulsoy

In this, the second of two papers focused on optimizing CMM productivity, a strategy is presented for obtaining operating speeds that maximize CMM throughput. The strategy involves posing the objective and constraints in terms of a nonlinear programming problem. The objective is to minimize measuring time, and constraints are on measurement quality, available motor power and other machine specific characteristics. Solutions to various measurement scenarios are given, computed with a generalized conjugate gradient method that uses a golden section acceptable search method. Also, a sensitivity study is presented that utilizes the optimization strategy to determine how change to a CMM’s design will affect overall productivity. In the final section, experimental results utilizing the optimally computed trajectories for both single axis and multiple axis motion are given. In addition, an example is presented to demonstrate the implementation of the optimization strategy in an actual measuring application. In the example, a connecting-rod is measured at three speeds: the machine’s default speed, a speed constrained by available motor power, and the optimized speed (constrained additionally by measurement quality). The experiment demonstrates a 27 percent reduction in time for the optimized speed compared to the default speed using the Bartlett test for comparing variances in the dimensional data obtained.


Author(s):  
Augustín Görög

Number of Points for Roundness Measurement - Measured Results Comparison Paper deals with filtering roundness. It presents experimental results measured for roundness turning and cylindrical grinding. Roundness was measured using Prismo Navigator 5 coordinate measuring machine. Evaluation was done by four methods: Minimum zone reference circles (MZCI), Least squares reference circle (LSCI), Minimum circumscribed reference circle (MCCI) and Maximum inscribed reference circle (MICI). The filters used were: Gauss, Spline and no filter.


2014 ◽  
Vol 625 ◽  
pp. 392-397
Author(s):  
Yuan Rui Zhang ◽  
Shigenobu Nagase ◽  
Jiang Zhu ◽  
Tomohisa Tanaka ◽  
Yoshio Saito

In this study, a small 6-DOF (degree of freedom) parallel mechanism worktable for machine tool was developed. There are many factors that affect the positioning precision and the accuracy of the machine tool. The uncertainty in position is mainly due to the structural rigidity, the geometric error of the parts and the assembly errors. It is very difficult to estimate the assembly errors and the link parameter of each part. Moreover, it is necessary to make clear the relation of cross talk between each axis for parallel mechanism. In this research, a method to compensate the movement error of worktable based on the measurement result was proposed and discussed. First, in order to measure the positioning accuracy of the worktable a measuring method by using 3-dimensional coordinate measuring machine (CMM) was proposed. After the evaluation, the positioning accuracy of the parallel mechanism worktable, the error of each configuration parameter can be obtained. By the correction of the inverse kinematic program, the improvement of the positioning accuracy of the worktable was confirmed. After calibrating several times, the positioning error became stable within a constant range. It is confirmed that this method to obtain the parameter error is effective, and it is possible to improve the positioning accuracy.


Sign in / Sign up

Export Citation Format

Share Document