Finite Element Analysis of the Shock Absorber for Vehicle

2013 ◽  
Vol 706-708 ◽  
pp. 1361-1364
Author(s):  
Chao Fu Liu

As for the structural features and the characteristics of fiber-reinforced rubber of a shock absorber for vehicle, this paper mainly focuses on its deformation and static characteristic analysis. A shock absorber whose type is JW2-5202 was analyzed in its performance characteristics of deformation with variations in cord elastic modulus and cord angle. According to the finite element analysis on the load vs. the displacement, and the internal pressure vs. the displacement, the results are in accordance with the test ones.

2009 ◽  
Vol 16-19 ◽  
pp. 510-514 ◽  
Author(s):  
Yao Man Zhang ◽  
Zhi Kun Xie ◽  
Yong Xian Liu

The linear rolling guideway is one of the most essential parts of the machine tool. So it is very important to analyze the dynamic-static characteristic of the machine tool consider rolling guideway and to study the effect on machinery function. The paper’s research is based on a NC machine tool produced by a certain plant of machine tools. Methods of simulating the rolling guideway support are studied, and the configuration of the spring damper elements of the bearing supports are also studied, and the finite element analysis on the CKS6125 machine tool has been made to confirm its dynamic characteristics. Then the finite element analysis models are validated by some experiments.


Author(s):  
Yong Bai ◽  
Fan Xu ◽  
Peng Cheng ◽  
Mohd Fauzi Badaruddin ◽  
Mohd Ashri

Being corrosion resistant, light weight, and easy to install at relatively low cost, Reinforced Thermoplastic Pipe (RTP) is now increasingly being used for offshore operations. RTP pipe in this study is mainly composed of three layers: a wound high strength fiber reinforced layer to improve the resistance of the pipe to internal pressure; a plastic inner layer to transport fluid; a plastic outer layer to protect the pipe. A precise calculation of the burst strength of RTP pipe will be useful for the safe use of RTP pipe’s internal pressure resistance. The Finite Element Analysis (FEA) method and mathematical analysis are employed to study the properties of pipe under internal pressure. The Finite Element Analysis method is used to simulating the pipe under increasing internal pressure using ABAQUS. The model is established with the conventional shell element, and the anisotropic property of plastic is also considered in the model. In the mathematical analysis, the reinforcement layer of the pipe is assumed to be anisotropic and other layers are assumed to be isotropic. Based on the three-dimensional (3D) anisotropic elasticity theory, an exact elastic solution for burst strength of the pipe under internal pressure has been studied. This paper focus on the calculation of RTP pipe’s burst strength, using mathematical approach and FEA approach, on the basis of elaborated study of RTP pipe’s failure process. Our results from mathematical and FE simulation agree each other for burst pressure of the RTP pipe. Our FEA models are also compared with the experimental research in order to validate our FEA models.


Author(s):  
Xinyu Sun ◽  
Yong Bai ◽  
Xiaojie Zhang ◽  
Chang Liu ◽  
Jiannan Zhao

Abstract In recent years, petroleum and natural gas industry technology continues to develop, so the market demand for polyester fiber reinforced flexible composite pipe is increasing. Polyester reinforced flexible composite pipe is widely used in practical production, which is based on thermoplastic material and winded by polyester fiber. Based on the anisotropic uniformity of polyester reinforced flexible composite pipes, this paper focuses on the mechanical behavior of flexible composite pipes under internal pressure. By using numerical analysis method, the stress-strain change and burst pressure model of polyester reinforced pipe under internal pressure are established. The short-term burst pressure test is carried out to obtain the burst pressure of the reinforced pipe. The finite element analysis software ABAQUS is used to establish finite element model for simulation analysis. According to the generated test data, the correctness of the finite element analysis results is verified. The sensitivity of winding angle and diameter-thickness ratio to the pressure was studied to further understand the mechanical properties of polyester reinforced composite pipe.


Author(s):  
Min-Ki Cho ◽  
Chang-Hoon Ha ◽  
Moo-Yong Kim ◽  
Sang-Cheol Lee ◽  
Jea-Mean Koo ◽  
...  

A tube support plate is one of the significant parts of a steam generator, which confines the rotational and translational motion of tubes caused by the hydraulic and seismic load. It also provides a flow path along the tubes. There are various types of tube support plates according to the component designer’s preference. In this investigation, ten types of trefoil Broached Tube Support Plate (BTSP) specimens made from ASME stainless steel were analyzed and tested to determine the appropriate shape of trefoil BTSP in the view of the elastic properties including elastic modulus and Poisson’s ratio. The types of trefoil BTSP specimens were designated as SI through S5 and L1 through L5 for S and L types, respectively. These specimens are categorized by the shape and dimension of broached hole. Ten specimens were investigated through finite element analysis, and compression and bending tests. The dimensions of the test specimens were decided through a previous research study done to examine appropriate shape for the compression and bending tests. The equivalent elastic properties of BTSP were obtained by the finite element analysis as per different loading orientation as well as the various specimen types. Autodesk® Inventor™ software was used to make the analytical model and ABAQUS® software was used for the analysis and post-processing. The equivalent elastic properties of BTSP specimens were also acquired by the compression and bending tests. From the results of the finite element analysis, and the compression and bending tests, the appropriate shapes of trefoil BTSP with regard to the equivalent elastic modulus, and Poisson’s ratio are suggested as L4, S3, and S4.


2010 ◽  
Vol 139-141 ◽  
pp. 996-1000
Author(s):  
Yao Man Zhang ◽  
Zhi Kun Xie ◽  
Qi Wei Liu

To design a machine tool successfully, its essential parts should be analyzed and evaluated during the process of design. The liner motion guide is one of the most essential parts of the machine tool. So it is very important to analyze the dynamic-static characteristic of the machine tool consider linear motion guide and to study the effect on machinery function. The paper’s research is based on a NC machine tool produced by a certain plant of machine tools. Methods of simulating the linear rolling guide support are studied, and the configuration of the spring damper elements of the bearing supports are also studied, and the finite element analysis on the CKS6125 machine tool has been made to confirm its dynamic characteristics. Then the finite element analysis models are validated by some experiments.


Author(s):  
Nader Yoosef-Ghodsi ◽  
Mamdouh Salama ◽  
Qishi Chen

The FAST-Pipe™ concept involves wrapping a conventional strength steel pipe (e.g. X70), whose thickness is selected to satisfy axial and bending load requirement, with dry fibreglass to achieve the pressure load requirement. FAST-Pipe™ offers several technical and economical advantages over high strength steel concepts. Since FAST-Pipe™ is a new technology, there is a need to develop analytical methods for its design. This paper describes the finite element analysis (FEA) models used to predict experimental response. The calibration of the FEA models for FAST-Pipe™ involved the pressure-strain history, the burst pressure, the moment curvature history and the bending strain capacity of FAST-Pipe™ subjected to a combination of internal pressure, axial force and bending. The finite element program ABAQUS was used to develop shell models capable of simulating the burst and bending behaviour of FAST-Pipe™. Several burst and bend tests performed on 48- and 12-inch pipes were used to verify and calibrate the finite element analysis models. The effects of the type of steel-fibre bond, the thickness of the wrap, the wrap elastic modulus and the steel yield criteria were studied for the bend model. In the main FEA bend models, no bond was assumed to exist between the steel liner and the wrap in the hoop direction, and the steel liner was modelled using an elastic-plastic, kinematic hardening material model with an initially shifted yield surface. The failure of both the burst and bend models was defined as the point where the wrap hoop strain reached a failure strain of about 2%. The implementation of the FEA burst model was validated based on the burst test results. The assumption of no bond in the hoop direction and full bond in other directions resulted in reasonable predictions of the bending strain capacity. The autofrettage process influenced only the initial part of the moment-curvature response of a FAST-Pipe™ by producing a stiffer response, without significantly affecting the bending strain at failure and moment capacity. The wrap elastic modulus value and the type of yield criteria used for the steel liner had no significant effect on the moment capacity reached by the FEA models.


2014 ◽  
Vol 490-491 ◽  
pp. 342-346
Author(s):  
Yao Man Zhang ◽  
Guang Xiao Yang ◽  
Ren Jun Gu

Linear rolling guides are widely used in the NC machine tool, and usually the NC machine tool's characteristics shall been influenced by the characteristics of the guide greatly. The HSR series of liner rolling guides are taken as the research object of the paper. The methods of constructing the dynamic finite element analysis models are studied. The contact element is applied to simulate the characteristics of junction surfaces during the static characteristic analysis. The spring damping element is applied during the dynamic characteristic analysis. The static stiffness, natural frequencies, modal shapes and other characteristics are obtained by finite element analysis. Then the experiments of linear rolling guide are carried out and verified the model that had been built and calculation results of finite element analysis.


2013 ◽  
Vol 712-715 ◽  
pp. 1145-1148
Author(s):  
Shi Gang Wang ◽  
Guan Xiong Wu ◽  
Chao Cui ◽  
Xi Bing Li

In order to solve irregular product surface quality is difficult to test problems, this paper combined reverse engineering with finite element analysis related technologies, good results have been achieved. Selected the helmet as the research object, introduced the reverse engineering and finite element analysis of the basic methods and ideas. First through the 3D laser scanner for safety helmet surface point cloud data, the data conducted the pretreatment in the Imageware software, and then in UG finished surface reconstruction and materialization process, finally guided the reverse forming helmet entity into Ansys Workbench software to carry on the finite element analysis, through the generation of stress and deformation analysis nephogram to test the sample quality.


2009 ◽  
Vol 626-627 ◽  
pp. 447-452 ◽  
Author(s):  
Yao Man Zhang ◽  
S.H. Wang ◽  
Yong Xian Liu

One of the important factors resulting in the performances of the machinery is its dynamic characteristics. The spindle assembly is one of the usual parts of NC machine tool, so its dynamic-static characteristics will affect the performances of machine tool. The study is based on a NC machine tool produced by a certain plant of machine tools. The finite element dynamic analysis model of spindle assembly was developed by introducing two or three groups of circumferential spring damper elements which are arrange at different angle around the spindle, and the effect of different supporting conditions and different arrange angle on the modal analysis of the spindle assembly were discussed. The finite element analysis on spindle and spindle assembly has been made to confirm its dynamic characteristics. Then the finite element analysis models are validated by some experiments.


Sign in / Sign up

Export Citation Format

Share Document