A Numerical Study of Underwater Explosion Bubble

2013 ◽  
Vol 706-708 ◽  
pp. 1734-1737
Author(s):  
Cho Chung Liang ◽  
Tso Liang Teng ◽  
Ching Yu Hsu ◽  
Anh Tu Nguyen

The dynamical process of underwater explosion bubble is a very complicated phenomenon with many facets needed to consider. After detonation, shock wave propagates in a very short time while the oscillation of bubble occurs in a long time. Bubble pulsation can cause serious damage for the structures nearby due to the whipping effect, bubble pulse or water jet impact in the collapse phase. This paper presents an application of Finite Element Method (FEM), namely Eulerian technique, to simulate the dynamical process of bubble and numerical results were verified by an experiment. This approach shows it's feasibility in simulating the bubble pulsation as well as the formation of water jet at the end of first contracting circle. Although numerical model was simplified by the boundary conditions, the success of this method is foundation for further study of bubble such as in predicting the damages of both nearby submerged structures as well as floating structures.

2014 ◽  
Vol 81 ◽  
pp. 29-38 ◽  
Author(s):  
Ching-Yu Hsu ◽  
Cho-Chung Liang ◽  
Anh-Tu Nguyen ◽  
Tso-Liang Teng

2020 ◽  
Vol 902 ◽  
pp. 126-139
Author(s):  
Anh Tu Nguyen

The dynamic process of an underwater explosion (UNDEX) is a complex phenomenon that involves several facets. After detonation, the shockwave radially propagates at a high speed and strikes nearby structures. Subsequently, bubble oscillation may substantially damage the structures because of the whipping effect, water jet impact, and bubble pulse. This paper presents an application of explicit finite element analyses to simulate the process of an UNDEX bubble in the vicinity of rigid wall, in which the coupled Eulerian-Lagrangian (CEL) approach was developed to overcome the difficulties regarding the classical finite element method (FEM), large deformations, and flow simulation of fluid and gas. The results demonstrate that the method is well suited to manage the UNDEX bubble problem and can be used to model the major features of the bubble dynamics. Furthermore, the behavior of an UNDEX bubble near a rigid wall was also examined in the present study, which showed that the migration of the bubble and the development of the water jet are influenced strongly by the standoff distance between the initial bubble position and the wall. This method can be used in future studies to examine UNDEX bubbles in the vicinity of deformable and complex structures.


2013 ◽  
Vol 72 ◽  
pp. 98-106 ◽  
Author(s):  
Ching-Yu Hsu ◽  
Cho-Chung Liang ◽  
Tso-Liang Teng ◽  
Anh-Tu Nguyen

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yingyu Chen ◽  
Xiongliang Yao ◽  
Xiongwei Cui

The bubble dynamics behaviors and the pressure in the wall center are investigated through experimental method and numerical study. In the experiment, the dynamics of an underwater explosion (UNDEX) bubble beneath a rigid wall are captured by high-speed camera and the wall pressure in the wall center is measured by pressure transducer. To reveal the process and mechanism of the pressure on a rigid wall during the first bubble collapse, numerical studies based on boundary element method (BIM) are applied. Numerical results with two different stand-off parameters (γ=0.38 and γ=0.90) show excellent agreement with experiment measurements and observations. According to the experimental and the numerical results, we can conclude that the first peak is caused by the reentrant jet impact and the following splashing effect enlarged the duration of the first jet impact. When γ=0.38, the splashing jet has a strong impact on the minimum volume bubble, a number of tiny bubbles, formed like bubble ring, are created and collapse more rapidly owing to the surrounding high pressure and emit multi shock waves. When γ=0.90, the pressure field around the bubble is low enough only a weak rebounding bubble peak occurs.


1923 ◽  
Vol 128 (4) ◽  
pp. 264-264
Author(s):  
J. W. Harsch
Keyword(s):  

Author(s):  
Kenji Ikeda ◽  
Yusuke Kawamura ◽  
Masahiro Kobayashi ◽  
Taito Fukushima ◽  
Yushi Sorin ◽  
...  

Background: Although DC Bead has been useful in treatment of multiple and large hepatocellular carcinoma, loading time of doxorubicin into the DC Bead takes a long time of 30-120 minutes. Epirubicin is also used as an antitumor agent together with DC Bead, but its loading efficiency was not sufficiently elucidated. Methods: To shorten loading time of epirubicin into DC Bead (100-300µm, 300-500µm, 500-700µm), we examined the following three methods after mixing the drug: (a) let stand in room temperature, (b) agitated for 30 seconds with Vortex mixer, and (c) sonicated for 30 seconds with ultrasonic cleaner. After loading of epirubicin by each method, supernatant concentration for epirubicin was assayed at 5, 10, 30, 60, and 120 minutes. Results: Epirubicin loading rates for small bead (100-300µm) at 5 minutes were 82.9 % in group a, 93.8% in group b, and 79.9 % in group c. Similarly, medium bead (300-500µm), 40.1% in group a, 65.7% in group b and 45.5% in group c, respectively. In large-sized bead (500-700µm), loaded rates of epirubicin were 38.8% in group a, 59.0% in group b and 48.0% in group c. Agitation of mixture of epirubicin and DC Bead with Vortex mixer significantly shortened the loading time, but sonication did not affect the time required. Microscopic examination did not lead to any morphological change of microspheres in all the methods. Conclusions: Short time of agitation with Vortex mixer reduced the necessary time for loading of epirubicin in every standard of DC Bead.


Author(s):  
Yasunobu Iwai ◽  
Koichi Shinozaki ◽  
Daiki Tanaka

Abstract Compared with space parts, consumer parts are highly functional, low cost, compact and lightweight. Therefore, their increased usage in space applications is expected. Prior testing and evaluation on space applicability are necessary because consumer parts do not have quality guarantees for space application [1]. However, in the conventional reliability evaluation method, the test takes a long time, and the problem is that the robustness of the target sample can’t be evaluated in a short time. In this report, we apply to the latest TSOP PEM (Thin Small Outline Package Plastic Encapsulated Microcircuit) an evaluation method that combines preconditioning and HALT (Highly Accelerated Limit Test), which is a test method that causes failures in a short time under very severe environmental conditions. We show that this method can evaluate the robustness of TSOP PEMs including solder connections in a short time. In addition, the validity of this evaluation method for TSOP PEM is shown by comparing with the evaluation results of thermal shock test and life test, which are conventional reliability evaluation methods.


2019 ◽  
Vol 489 (5) ◽  
pp. 512-516
Author(s):  
V. V. Geogjaev ◽  
V. E. Zakharov ◽  
S. I. Badulin

A new algorithm is used for detailed numerical study of the evolution of isotropic swell in a homogeneous ocean. It is shown that the Zakharov-Filonenko spectrum occurs in an explosive manner in a short time. The Kolmogorov constant of the solution is estimated numerically.


1984 ◽  
Vol 16 (3-4) ◽  
pp. 623-633
Author(s):  
M Loxham ◽  
F Weststrate

It is generally agreed that both the landfill option, or the civil techniques option for the final disposal of contaminated harbour sludge involves the isolation of the sludge from the environment. For short time scales, engineered barriers such as a bentonite screen, plastic sheets, pumping strategies etc. can be used. However for long time scales the effectiveness of such measures cannot be counted upon. It is thus necessary to be able to predict the long term environmenttal spread of contaminants from a mature landfill. A model is presented that considers diffusion and adsorption in the landfill site and convection and adsorption in the underlaying aquifer. From a parameter analysis starting form practical values it is shown that the adsorption behaviour and the molecular diffusion coefficient of the sludge, are the key parameters involved in the near field. The dilution effects of the far field migration patterns are also illustrated.


2021 ◽  
pp. 074823372110226
Author(s):  
Gholamali Jelodar ◽  
Mansour Azimzadeh ◽  
Fatemeh Radmard ◽  
Narges Darvishhoo

Exposure to mobile phone radiation causes deleterious health effects on biological systems. The objects of this study were to investigate the effect of 900-MHz radiofrequency waves (RFW) emitted from base transceiver station antenna on intrapancreatic homocysteine (Hcy), tumor necrosis factor-α (TNF-α), and nerve growth factor (NGF) as predisposing factors involved in pancreatic beta cell damage. Thirty male rats (Sprague-Dawley, 200 ± 10 g) were randomly divided into the control (without any exposure) and exposed groups: short time (2 h/day), long time (4 h/day), and exposed to 900-MHz RFW for 30 consecutive days. On the last days of the experiment, animals were killed and pancreas tissue was dissected out for evaluation of serotonin, Hcy, TNF-α, and NGF. There was a significant decrease in the serotonin and NGF levels in the pancreatic tissue of exposed groups compared to the control group ( p < 0.05). Also, the levels of serotonin and NGF in the long-time exposure were significantly lower than the short-time exposure ( p < 0.05). However, levels of Hcy and TNF-α were significantly increased in the pancreas of exposed groups compared to the control groups ( p < 0.05). Exposure to 900-MHz RFW decreased pancreatic NGF and serotonin levels and increased the proinflammatory markers (Hcy and TNF-α), which can be a predisposing factor for type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document