Stability Analysis about the Impact of Soft Rock to the Underground Cavern Group

2013 ◽  
Vol 706-708 ◽  
pp. 560-564
Author(s):  
Yi Huan Zhu ◽  
Guo Jian Shao ◽  
Zhi Gao Dong

Soft rock is frequently encountered in underground excavation process. It is difficult to excavate and support in soft rock mass which has low strength, large deformation and needs much time to be out of shape but little time to be self-stabilized. Based on a large underground power station, finite element model analysis was carried out to simulate the excavation process and the results of displacement, stress and plasticity area were compared between supported and unsupported conditions to evaluate the stability of the rock mass.

Author(s):  
Mohamed F. El-Amin ◽  
Jisheng Kou ◽  
Shuyu Sun

In this work, we introduce a theoretical foundation of the stability analysis of the mixed finite element solution to the problem of shale-gas transport in fractured porous media with geomechanical effects. The differential system was solved numerically by the Mixed Finite Element Method (MFEM). The results include seven lemmas and a theorem with rigorous mathematical proofs. The stability analysis presents the boundedness condition of the MFE solution.


2017 ◽  
Vol 62 (3) ◽  
pp. 653-669 ◽  
Author(s):  
Mohammadali Sepehri ◽  
Derek Apel ◽  
Wei Liu

AbstractPredicting the stability of open stopes can be a challenging task for underground mine engineers. For decades, the stability graph method has been used as the first step of open stope design around the world. However, there are some shortcomings with this method. For instance, the stability graph method does not account for the relaxation zones around the stopes. Another limitation of the stability graph is that this method cannot to be used to evaluate the stability of the stopes with high walls made of backfill materials. However, there are several analytical and numerical methods that can be used to overcome these limitations. In this study, both empirical and numerical methods have been used to assess the stability of an open stope located between mine levels N9225 and N9250 at Diavik diamond underground mine. It was shown that the numerical methods can be used as complementary methods along with other analytical and empirical methods to assess the stability of open stopes. A three dimensional elastoplastic finite element model was constructed using Abaqus software. In this paper a sensitivity analysis was performed to investigate the impact of the stress ratio “k” on the extent of the yielding and relaxation zones around the hangingwall and footwall of the understudy stope.


2021 ◽  
Vol 37 ◽  
pp. 205-215
Author(s):  
Heng Chen ◽  
Hongmei Cheng ◽  
Aibin Xu ◽  
Yi Xue ◽  
Weihong Peng

ABSTRACT The fracture field of coal and rock mass is the main channel for gas migration and accumulation. Exploring the evolution law of fracture field of coal and rock mass under the condition of drilling and slitting construction has important theoretical significance for guiding efficient gas drainage. The generation and evolution process of coal and rock fissures is also the development and accumulation process of its damage. Therefore, based on damage mechanics and finite element theory, the mathematical model is established. The damage variable of coal mass is defined by effective strain, the elastoplastic damage constitutive equation is established and the secondary development of finite element program is completed by FORTRAN language. Using this program, the numerical simulation of drilling and slitting construction of the 15-14120 mining face of Pingdingshan No. 8 Mine is carried out, and the effects of different single borehole diameters, different kerf widths and different kerf heights on the distribution area of surrounding coal fracture field and the degree of damage are studied quantitatively. These provide a theoretical basis for the reasonable determination of the slitting and drilling arrangement parameters at the engineering site.


Author(s):  
Kevin Darques ◽  
Abdelmounaïm Tounzi ◽  
Yvonnick Le-menach ◽  
Karim Beddek

Purpose This paper aims to go deeper on the analysis of the shaft voltage of large turbogenerators. The main interest of this study is the investigation process developed. Design/methodology/approach The analysis of the shaft voltage because of several defects is based on a two-dimensional (2D) finite element modeling. This 2D finite element model is used to determine the shaft voltage because of eccentricities or rotor short-circuit. Findings Dynamic eccentricities and rotor short circuit do not have an inherent impact on the shaft voltage. Circulating currents in the stator winding because of defects impact the shaft voltage. Originality/value The original value of this paper is the investigation process developed. This study proposes to quantify the impact of a smooth stator and then to explore the contribution of the real stator winding on the shaft voltage.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Hong-di Jing ◽  
Yuan-hui Li ◽  
Kun-meng Li

In order to study the deformation mechanism of soft rock roadway in underground mines, it is necessary not only to study the influence of the dynamic disturbance caused by the cyclic mining blasting vibration on the stability of the soft rock roadway but also to study the degradation of the roadway surrounding rock itself and other factors. The paper presented a synthetic research system to investigate the factors that influence roadway rock structure deterioration in Baoguo Iron Mine. Firstly, the stability of rock mass was analyzed from the perspective of the physical and structural characteristics of the rock mass. Afterwards, according to monitoring data of mining blasting vibration, a suitable safety blasting prediction model for Baoguo Iron Mine was determined. And then, combining the results of mining blasting vibration monitoring and deformation monitoring, the effect of cyclic mining blasting on the stability of the soft rock roadway was obtained. By systematically studying the intrinsic factors of rock quality degradation and external environmental disturbances and their interactions, this paper comprehensively explores the deformation mechanism of soft rock roadway and provides the support for fundamentally solving the large deformation problems of soft rock roadway in underground mines.


Author(s):  
Hervé Algrain ◽  
Calogero Conti ◽  
Pierre Dehombreux

Abstract Finite Element Model Updating has for objective to increase the correlation between the experimental dynamic responses of a structure and the predictions from a model. Among different initial choices, these procedures need to establish a set of representative parameters to be updated in which some are in real error and some are not. It is therefore important to select the correct properties that have to be updated to ensure that no marginal corrections are introduced. In this paper the standard localization criteria are presented and a technique to separate the global localization criteria in family-based criteria for damped structures is introduced. The methods are analyzed and applied to both numerical and experimental examples; a clear enhancement of the results is noticed using the family-based criteria. A simple way to qualify the stability of a localization method to noise is presented.


Author(s):  
Ramakrishnan Maruthayappan ◽  
Hamid M. Lankarani

Abstract The behavior of structures under the impact or crash situations demands an efficient modeling of the system for its behavior to be predicted close to practical situations. The various formulations that are possible to model such systems are spring mass models, finite element models and plastic hinge models. Of these three techniques, the plastic hinge theory offers a more accurate model compared to the spring mass formulation and is much simpler than the finite element models. Therefore, it is desired to model the structure using plastic hinges and to use a computational program to predict the behavior of structures. In this paper, the behavior of some simple structures, ranging from an elementary cantilever beam to a torque box are predicted. It is also shown that the plastic hinge theory is a reliable method by comparing the results obtained from a plastic hinge model of an aviation seat structure with that obtained from a finite element model.


2014 ◽  
Vol 501-504 ◽  
pp. 578-582
Author(s):  
Liang Hsu ◽  
Ming Long Hu ◽  
Jun Zhi Zhang

Considering secondary load, simulate the axial compression process of reinforced concrete square columns strengthened with igneous rock fiber reinforced polymer with Abaqus. Make a comparison between the simulation result and experimental result. The finite-element model can simulate the experiment preferably. And the impact of lagged strain is very obvious.


Sign in / Sign up

Export Citation Format

Share Document