Graphene Modified Molecular Imprinted Electrochemical Sensor for Specific Recognition of Bovine Serum Albumin

2013 ◽  
Vol 709 ◽  
pp. 891-894 ◽  
Author(s):  
Feng Li ◽  
Jian Fei Xia ◽  
Zong Hua Wang ◽  
Yan Zhi Xia ◽  
Fei Fei Zhang ◽  
...  

A simple and efficient molecularly imprinted sensor (MIPs/GR/GCE) was firstly prepared by electropolymerization of pyrrole in the presence of bovine serum albumin (BSA) in an aqueous solution based on a graphene modified glassy carbon electrode for the selective recognition of bovine serum albumin. The prepared sensor was characterized by differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS), in which [Fe(CN)6]3−/4−was used as an electrochemical active probe. The results showed a wide linear range from 1.0 × 10-3to 1.0 × 10-9g/mL. And the imprinted biosensor indicated excellent selectivity and high sensitivity.

2010 ◽  
Vol 53 (4) ◽  
pp. 905-911 ◽  
Author(s):  
MinJie Guo ◽  
Ting Gao ◽  
Zhi Fan ◽  
JingXia Yao ◽  
JianJun Xia ◽  
...  

Langmuir ◽  
2008 ◽  
Vol 24 (11) ◽  
pp. 5773-5780 ◽  
Author(s):  
ZhenDong Hua ◽  
ZhiYong Chen ◽  
YuanZong Li ◽  
MeiPing Zhao

2021 ◽  
Vol 5 (1) ◽  
pp. 64
Author(s):  
Youssra Aghoutane ◽  
Nezha El Bari ◽  
Zoubida Laghrari ◽  
Benachir Bouchikhi

Fenthion, an organophosphate insecticide, is a cholinesterase inhibitor and is highly toxic. An electrochemical sensor based on molecularly imprinted polymer is developed here for its detection. For this purpose, 2-aminothiophenol mixed with gold nanoparticles was immobilized on screen-printed gold electrodes. The FEN pattern was then fixed before being covered with 2-aminothiophenol. Cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy methods were used for the electrochemical characterization. The low detection limit was 0.05 mg/Kg over a range of 0.01–17.3 µg/mL. The sensor was successfully applied for the determination of FEN in olive oil samples with high recovery values.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4269 ◽  
Author(s):  
Ewa Paradowska ◽  
Katarzyna Arkusz ◽  
Dorota G. Pijanowska

The increasing interest of attachment of gold nanoparticles (AuNPs) on titanium dioxide nanotubes (TNTs) has been devoted to obtaining tremendous properties suitable for biosensor applications. Achieving precise control of the attachment and shape of AuNPs by methods described in the literature are far from satisfactory. This work shows the comparison of physical adsorption (PA), cyclic voltammetry (CV) and chronoamperometry (CA) methods and the parameters of these methods on TNTs properties. The structural, chemical, phase and electrochemical characterizations of TNTs, Au/TNTs, AuNPs/TNTs are carried out using scanning electron microscopy (SEM), electrochemical impedance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy. The use of PA methods does not allow the deposition of AuNPs on TNTs. CV allows easily obtaining spherical nanoparticles, for which the diameter increases from 20.3 ± 2.9 nm to 182.3 ± 51.7 nm as a concentration of tetrachloroauric acid solution increase from 0.1 mM to 10 mM. Increasing the AuNPs deposition time in the CA method increases the amount of gold, but the AuNPs diameter does not change (35.0 ± 5 nm). Importantly, the CA method also causes the dissolution of the nanotubes layer from 1000 ± 10.0 nm to 823 ± 15.3 nm. Modification of titanium dioxide nanotubes with gold nanoparticles improved the electron transfer and increased the corrosion resistance, as well as promoted the protein adsorption. Importantly, after the deposition of bovine serum albumin, an almost 5.5-fold (324%) increase in real impedance, compared to TNTs (59%) was observed. We found that the Au nanoparticles—especially those with smaller diameter—promoted the stability of bovine serum albumin binding to the TNTs platform. It confirms that the modification of TNTs with gold nanoparticles allows the development of the best platform for biosensing applications.


2010 ◽  
Vol 40 (3) ◽  
pp. 282-290
Author(s):  
JingXia YAO ◽  
MinJie GUO ◽  
JianJun MI HuaiFeng XIA ◽  
怀风 宓 ◽  
Ting GAO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document