Micro Machining Simulation Analysis by Finite Element Method

2013 ◽  
Vol 712-715 ◽  
pp. 575-578
Author(s):  
Zhan Min Yin ◽  
Yu Juan Dai

Micro machining becomes more and more important with the tendency of miniaturization of components used in various fields from military to civilian applications. The finite element method software Abaqus is used to model the nonlinear thermal force coupled elastic-plastic micro machining processes. Relatively systematic simulation analysis has been introduced based on the model combining the Johnson-Cook failure criteria, element deletion strategy etc. It reveals that the size effect is dominant while the depth of cut reaches the cutting edge radius. The rake angle plays more important roles on the micro machining than that of the cutting speed.

2014 ◽  
Vol 474 ◽  
pp. 192-199 ◽  
Author(s):  
Ladislav Kandráč ◽  
Ildikó Maňková ◽  
Marek Vrabel' ◽  
Jozef Beňo

In this paper, a Lagrangian finite element-based machining model is applied in the simulation of cutting forces in two-dimensional orthogonal cutting of titanium Ti-6Al-4V alloy. The simulations were conducted using 2D Finite Element Method (FEM) machining simulation software. In addition, the cutting experiments were carried out under the different cutting speed, feed and tool geometry (rake angle, clearance angle and cutting edge radius). The effect of cutting speed, feed and tool geometry on cutting force were investigated. The results obtained from the finite element method (FEM) and experimental studies were compared.


2001 ◽  
Vol 124 (1) ◽  
pp. 65-70 ◽  
Author(s):  
S. Sriram ◽  
C. J. Van Tyne

Spherical dies are increasing in popularity in the cold-forming industry because of the ease in subsequent secondary operations. This paper presents criteria curves, calculated using the finite element method, to avoid central bursting or internal chevrons in forward extrusions through spherical dies. Critical values of mean stress at the centerline of the extrusion are used as failure criteria to distinguish between acceptable and unacceptable die designs. These failure criteria are conservative in that the critical step for central bursting is considered to be the formation of a microvoid during extrusion, rather than linking of the voids during continued deformation. The resulting process criteria curves are conservative estimates of internal chevron formation during extrusion through spherical dies.


2020 ◽  
Author(s):  
Gabriel Dos Santos ◽  
Flávio Goulart dos Reis Martins ◽  
Bárbara Maria Oliveira Santos ◽  
Daniel Henrique Nogueira Dias ◽  
Guilherme Gonçalves Sotelo ◽  
...  

Nowadays, the complexity of electrical power systems is increasing. Consequently, the occurrence and the amplitude of the fault current are rising. This fault currents harm the substations’ electrical equipment. Besides, the growth in the fault current level is forcing the change of the circuit breakers to others with a higher interruption capability. A proposal to solve this problem is the fault current limiter (FCL). This equipment has low impedance in the normal operation and high impedance in a short circuit moment. Superconductors are an advantageous choice of material in this case, because of their properties. In order to simulate this equipment, the 2-D Finite Element Method (FEM) has been used. In this paper, a novel FEM simulation analysis of the saturated core Superconductor Fault Current Limiter (SFCL) is proposed using the A-V-H formulation. The current distribution in the superconducting coil is observed. The results are compared to the limited fault current measurements and simulations available in the literature.


2019 ◽  
Vol 130 ◽  
pp. 01001
Author(s):  
Agri Suwandi ◽  
Dede Lia Zariatin ◽  
Bambang Sulaksono ◽  
Estu Prayogi ◽  
I Made Widana

The fishing deck machinery is the tools used to collect fish in fishing activities. Fishing deck machinery is intended to improve the effectiveness of fishing operations. The mission of the Ministry of Marine Affairs and Fishery Year 2015-2019 in the Regulation of the Minister of Marine and Fisheries No. 45/PERMEN-KP/2015 which is a priority is to provide assistance for fishing facilities for fishermen; it is necessary to develop and optimize fishing deck machinery. To assure the safety and dependability of these fishing deck machinery, calculations, simulation and functional tests are needed. This paper discusses the prediction of structural failure in the design of fishing deck machinery a hydraulic type with finite element method simulation approach. The results of the FEM simulation analysis are (i) the maximum value of von-Mises stress is greater than the ultimate tensile strength of the material; (ii) 1st principal stress value minimum is smaller than the ultimate tensile strength of material; (iii). the Poisson ratio value higher than the Poisson ratio value of the material. Base on the simulation result, the structural design of fishing deck machinery is safety.


Sign in / Sign up

Export Citation Format

Share Document