Research Progress on Water-Using System Integration Methods

2013 ◽  
Vol 717 ◽  
pp. 170-176
Author(s):  
Chun Hui Pan ◽  
Zhi Yue Zhao ◽  
Huan Yun Wang ◽  
Cui Fang Dong

This paper introduces the research content, methods and progress of integrating the water distribution network, and has done a comprehensive overview from basic concepts to several typical methods for designing water-using networks such as water pinch analysis, mathematical programming, internal water main technique and experience-based design methodology. It has an advance view of the future developments direction as well.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdelrahman M. Farouk ◽  
Rahimi A. Rahman ◽  
Noor Suraya Romali

PurposeSustainability involves ensuring that sufficient resources are available for current and future generations. Non-revenue water (NRW) creates a barrier to sustainability through energy and water loss. However, a comprehensive overview of NRW reduction strategies is lacking. This study reviews the existing literature to identify available strategies for reducing NRW and its components and discusses their merits.Design/methodology/approachA systematic literature review was conducted to identify and analyze different strategies for reducing NRW. The initial search identified 158 articles, with 41 of these deemed suitably relevant following further examination. Finally, 14 NRW reduction strategies were identified from the selected articles.FindingsThe identified NRW reduction strategies were grouped into strategies for reducing (1) apparent losses (AL), (2) real losses (RL) and (3) water losses, with the latter involving the combination of AL and RL. The strategies adopted most frequently are “prevent water leakage” and “control water pressure.” In addition, water distribution network (WDN) rehabilitation has additional benefits over other RL reduction strategies, including saving water and energy, increasing hydraulic performance and enhancing reliability. Finally, utilizing decision support systems is the only strategy capable of reducing multiple NRW categories.Originality/valueThis review provides insights into the overall NRW problem and the strategies best equipped to address it. Authorities can use these findings to develop case-specific NRW reduction action plans that save water and energy, while providing other economic benefits. In addition, NRW reduction can improve WDN reliability.


2017 ◽  
Vol 16 (5) ◽  
pp. 1071-1079 ◽  
Author(s):  
Andrei-Mugur Georgescu ◽  
Sanda-Carmen Georgescu ◽  
Remus Alexandru Madularea ◽  
Diana Maria Bucur ◽  
Georgiana Dunca

2005 ◽  
Vol 5 (2) ◽  
pp. 31-38
Author(s):  
A. Asakura ◽  
A. Koizumi ◽  
O. Odanagi ◽  
H. Watanabe ◽  
T. Inakazu

In Japan most of the water distribution networks were constructed during the 1960s to 1970s. Since these pipelines were used for a long period, pipeline rehabilitation is necessary to maintain water supply. Although investment for pipeline rehabilitation has to be planned in terms of cost-effectiveness, no standard method has been established because pipelines were replaced on emergency and ad hoc basis in the past. In this paper, a method to determine the maintenance of the water supply on an optimal basis with a fixed budget for a water distribution network is proposed. Firstly, a method to quantify the benefits of pipeline rehabilitation is examined. Secondly, two models using Integer Programming and Monte Carlo simulation to maximize the benefits of pipeline rehabilitation with limited budget were considered, and they are applied to a model case and a case study. Based on these studies, it is concluded that the Monte Carlo simulation model to calculate the appropriate investment for the pipeline rehabilitation planning is both convenient and practical.


2003 ◽  
Vol 3 (1-2) ◽  
pp. 87-93 ◽  
Author(s):  
M. Engelhardt ◽  
D. Savic ◽  
P. Skipworth ◽  
A. Cashman ◽  
A. Saul ◽  
...  

There is an increasing pressure from the economic regulator in England and Wales for water companies to ensure that their capital maintenance decisions reflect an understanding of the long-term impact on their operational costs and risks. This implies that decisions must not only reflect the costs borne now but the likely costs in the future, and how these might be optimised. It is noteworthy that within the construction and transport industries, asset management decisions which have been driven in this direction utilise a whole life costing (WLC) methodology. This paper addresses the implications of transferring the concept of WLC to service-based assets such as water systems. A WLC approach to distribution network management aims to achieve the lowest network provision and operating cost when all costs are considered to achieve standards enforced by regulation. Cognisance is to be taken of all relevant costs - direct and indirect, private and societal - in order to balance the needs of the service supplier, the customer, society and the environment in a sustainable manner. A WLC analysis thus attempts to develop a cost profile over the life of the asset. Accounting for the costs over this period is achieved through a combination of activity based costing (ABC) and a life cycle assessment (LCA) used to identify potential social and environmental costs. This process means that each of these identified costs must be linked to some physical parameter that itself varies over time due to changing demands on the system, the different operational strategies available to the operator and natural deterioration of the fabric of the system. The links established between the cost and activities of the operator provide the basis for the development of a WLC decision tool (WiLCO) for application to water distribution network management.


2008 ◽  
Vol 8 (4) ◽  
pp. 421-426
Author(s):  
J. Menaia ◽  
M. Benoliel ◽  
A. Lopes ◽  
C. Neto ◽  
E. Ferreira ◽  
...  

Concerns arise from the possible occurrence of pathogens in drinking water pipe biofilms and storage tank sediments. In these studies, biofilm samples from pipes and sediments from storage tanks of the Lisbon drinking water distribution system were analyzed. Protein determinations and heterotrophic counts on pipe biofilm samples were used to assess the Lisbon network sessile colonization intensity and distribution. Indicator and pathogenic microorganisms were analyzed in pipe biofilm samples, as well as in storage tanks biofilm and sediments, by using cultural methods and PCR, to assess risks. Results have shown that the Lisbon network sessile colonization is relatively weak in intensity. In addition, no meaningful hazards were apparent for both the network biofilm and the storage tanks biofilm and sediments.


Author(s):  
Maasoumeh Marhamati ◽  
Asma Afshari ◽  
Behzad Kiani ◽  
Behrooz Jannat ◽  
Mohammad Hashemi

Background: Nitrate and nitrite can get into the body through the consumption of contaminated water either directly or indirectly. The accumulation of these compounds in the body, in the long run, leads to health problems, for example, digestive disorders, cancers, and even death threats in children. The aim of this review is to investigate nitrate and nitrite pollution levels in drinking water and fruit juices in Iran. Methods: In this review data were collected through searching the Scientific Information Database, Science-Direct, Scopus, PubMed, Google Scholar, and Magiran databases using the keywords Nitrate, Nitrite, Drinking water, Drinking Water Resources, Juice and Iran. Finally, the location of the studies was geocoded through the Google My Maps (https://www.google.com/mymaps) software. Results: Studies clearly indicated that the juices are safe in terms of nitrate. Nitrate and nitrite values were less than the national and international standards in all samples of bottled drinking water except for a few of the studies. The results of the reviewed studies also indicated that the nitrate content was higher than that written on the label in 96% of the samples, and nitrite was not labeled in 80% of them. The nitrate quantity was higher than the permissible limit, in the water distribution network of Bushehr, Gilan and Mazandaran Provinces. Talesh, Ardabil, Hashtgerd, Divandareh, and Kerman cities had high nitrate levels in more than 50% of wells. Conclusion: Using nitrogen fertilizers and lack of a wastewater treatment system were the main reasons for the presence of nitrate and nitrite.


Sign in / Sign up

Export Citation Format

Share Document