Mathematical Modeling and Experimental Study on Electrochemical Deburring of Miniature Holes

2013 ◽  
Vol 721 ◽  
pp. 382-386 ◽  
Author(s):  
Ze Fei Wei ◽  
Xing Hua Zheng ◽  
Zi Yuan Yu

The paper mainly focused on burr removal of the miniature hole drilled on aluminum plate by electrochemical machining. A mathematical model for the electrochemical deburring of miniature holes (M-ECD) was established based on the finite element analysis to the current density distribution. Both theoretical analysis and experimental study were held on the effects of many factors to the deburring results. The results proved that predictions based on our mathematical model were agreed with the experimental data comparatively.

2012 ◽  
Vol 184-185 ◽  
pp. 534-537
Author(s):  
Jing Jing Zhou ◽  
Ai Dong Guo ◽  
Chun Hui Li ◽  
Zhen Jiang Lin ◽  
Tie Zhuang Wu

By setting contact sets, achieved overall analysis results of the mechanical properties with omni-direction side-loading forklift truck lifting system based on COSMOSWorks. And made an experimental measurements to omni-direction side-loading forklift truck lifting system by electrometric methods. There was a good relevance between experimental data and calculation values, and the deviation was basically within the 10 percent allowed. Finally, in this way it verified the correctness and reliability of the finite element analysis by experimental measurements. Ensured the omni-direction side-loading forklift truck lifting system could be safe and efficient to work. And also it laid a foundation for subsequent structural optimization.


2007 ◽  
Vol 546-549 ◽  
pp. 1563-1566
Author(s):  
Min Li ◽  
Bao Yan Zhang ◽  
Xiang Bao Chen

Unsymmetric composite laminates were benefit to reducing the structure weight of some aircrafts. However, the cured unsymmetric laminates showed distortion at room temperature. Therefore, predicting the deformation before using the unsymmetrical composite is very important. In this study an attempt was made to predict the shapes of some unsymmetric cross-ply laminates using the finite element analysis (FEA). The bilinear shell-element was adopted in the process. Then the simulation results were compared with the experimental data. The studies we had performed showed that the theoretical calculation agreed well with the experimental results, the predicted shapes were similar to the real laminates, and the difference between the calculated maximum deflections and the experimental data were less than 5%. Hence the FEA method was suitable for predicting the warpage of unsymmetric laminates. The error analysis showed that the simulation results were very sensitive to the lamina thickness, 2 α and (T.


2010 ◽  
Vol 145 ◽  
pp. 317-320
Author(s):  
Chun Ming Zhang ◽  
Run Yuan Hao

This text is on the basis of the investigation of the 42MN flatting mill’s higher beam, establishing the flatting mill’s higher beam’s finite element model and the mathematical model which has optimum structure. According to the results of their structure finite element analysis, weaved the relevant procedures and optimized them, obtained ideal structural parameters, this text provide better ideas and ways for the structural design of the flatting mill’s higher beam.


Author(s):  
T.S. Sultanmagomedov ◽  
◽  
R.N. Bakhtizin ◽  
S.M. Sultanmagomedov

In article present the developed methodology will allow monitoring pipeline displacements under changes in operating conditions, as well as simulating unfavorable processes (thawing of soil, formation of taliks, violation of thermal insulation). The planning of the experiment was carried out to obtain the calculated mechanical characteristics of the soil, depending on the temperature and humidity, used to calculate the stress-strain state of the pipeline. A mathematical computer model has been developed to determine the radius and temperature field of the thawing halo around the pipeline. A template for displaying experimental data for their use in the finite element analysis of pipeline displacements during soil thawing is presented.


1982 ◽  
Vol 26 (02) ◽  
pp. 117-124
Author(s):  
Thomas L. Geers

A boundary-element method for treatment of the fluid-structure interaction in slamming analysis is described. The method emphasizes simplicity and efficiency, so that the analyst may devote most of his computational resources to the analysis of the structure. Numerical results for a number of rigid-impactor problems are compared with analytical solutions and experimental data, and procedures for the finite-element analysis of flexible impactors are discussed.


2019 ◽  
Vol 944 ◽  
pp. 867-872
Author(s):  
Lin Wang ◽  
Yu Ran Fan ◽  
Peng Song

The pressure capacity of reinforced thermoplastic pipe was studied by the finite element analysis and experimental study using Φ100 reinforced thermoplastic pipes. The simulation results illustrated that the failure mode of reinforced thermoplastic pipe under internal pressure was the break of glass fiber belt in structural layer. Moreover, the simulated burst pressure fitted well with the experimental result, the small deviation between two results may be resulted from the process defects of RTP.


2012 ◽  
Vol 188 ◽  
pp. 193-198
Author(s):  
Hu Mei Wang ◽  
Yang Wang ◽  
Lin Huang

This paper presents the effect of two-directional reinforced with geogrid on the performance of embankment, and carries out model experiment and numerical simulation on fly ash embankment. Finally, the curve of relationship among the embankment deformation, the amount of reinforcement and reinforced position was obtained. In addition, the optimum geogrids-reinforced project was also disscussed. The disscussion has some positive effect on the design of reinforced embankment of fly ash.


2012 ◽  
Vol 193-194 ◽  
pp. 891-896
Author(s):  
Zhe An Lu ◽  
Xin Jin ◽  
Xiao Chun Fan

The stress behavior of the reinforced inorganic polymer concrete(IPC) beam was discussed, included the load-deflection curve, craze load and ultimate bearing capacity under the static load function through the method of the experimental study and the non-linear finite element analysis. Compared the data of the experiment with the results of the finite element analysis, it indicates that the reinforced IPC beam owns higher ductility ratio and better deformation capacity on the same loading condition. Meanwhile, the cracks of IPC beam develop more slowly than the normal ones, there were less and smaller cracks on IPC beam. The research results offer the theoretical and experimental references for engineering practice and design index of IPC.


Sign in / Sign up

Export Citation Format

Share Document