Degradation of Long-Chain n-Alkanes by Acinetobacter Sp.

2013 ◽  
Vol 726-731 ◽  
pp. 2151-2155 ◽  
Author(s):  
Yin Song Liu ◽  
Hong Jun Han ◽  
Fang Fang

Alkanes are widespread in nature and cause seriously pollution of environment. In many of oil pollution treatment method, because of economic, effective and less damaging to the environment and many other advantages, bioremediation technology is thought to have broad application prospects. In this study, we isolated an efficient alkane-degrading strain from some coal gasification wastewater sludge. It was identified the strain L2-4 as Acinetobacter sp.(KC211013) through morphology and 16SrDNA sequence analysis. The maximum degradation rate was aquired to 58.7% under the condition of original alkanes concentration 700mg/L, pH 7.0 and temperature 35°C. The study was designed to provide good strain resources for oil pollution remediation and microbial en hanced oil recovery.

2020 ◽  
Vol 15 (4) ◽  
pp. 620-628
Author(s):  
Wei Zhang ◽  
Suilin Wang

Abstract The traditional treatment of coal-gasification wastewater produces high solvent and operation cost, secondary pollution and long processing cycle. The aim of the paper was to attempt an alternative approach of wastewater treatment in coal gasification process. With wastewater being heated and sprayed into the gasifier, water participates in the water–gas shift reaction; meanwhile, organic constituents in wastewater are thermally degraded in specific conditions. In the study, thermal degradation and kinetic analysis of COD and NH3-N from Lurgi coal-gasification wastewater were conducted experimentally. The results showed that COD degradation can be divided into three reaction regions: 200–600, 600–1000 and 1000–1200°C. Also, NH3-N degradation can be divided as 200–400, 400–800 and 800–1200°C. The reaction temperature, oxygen concentration and reaction residence time can improve organic constituents’ degradation rate. The COD and NH3-N degradation rate ranks in the order oxidative > inert > reductive. It is because increasing oxygen concentration indicates more free radical generation and aromatic hydrocarbon polymerization was weakened. In addition, NO conversion with NH3 occurs within a narrow temperature window (800–1000°C). Thus, NO concentration reached the peak 230 mg/m3 at 800°C and then reduced with the increase in reaction temperature. Furthermore, a pseudo-first-order reaction model was implemented to analyse the kinetics of COD and NH3-N degradation rate. The results of the present study indicate that the proposed wastewater treatment is feasible and can be preferable reference for further practical application.


1998 ◽  
Vol 38 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Junxin Liu ◽  
Weiguang Li ◽  
Xiuheng Wang ◽  
Hongyuan Liu ◽  
Baozhen Wang

In this paper, a study of a new process with nitrosofication and denitrosofication for nitrogen removal from coal gasification wastewater is reported. In the process, fibrous carriers were packed in an anoxic tank and an aerobic tank for the attached growth of the denitrifying bacteria and Nitrobacter respectively, and the suspended growth activated sludge was used in an aerobic tank for the growth of Nitrosomonas. A bench scale test has been carried out on the process, and the test results showed that using the process, 25% of the oxygen demand and 40% of the carbon source demand can be saved, and the efficiency of total nitrogen removal can increase over 10% as compared with a traditional process for biological nitrogen removal.


Author(s):  
Jianzhong Liu ◽  
Dedi Li ◽  
Jianbin Wang ◽  
Zhi Chen ◽  
Jun Cheng ◽  
...  

Fuel ◽  
2021 ◽  
Vol 305 ◽  
pp. 121600
Author(s):  
Cong Chen ◽  
Jianzhong Liu ◽  
Hongli Wu ◽  
Jianbin Wang ◽  
Jun Cheng

2014 ◽  
Vol 1049-1050 ◽  
pp. 39-43 ◽  
Author(s):  
Qin Hong Ji ◽  
Salma Tabassum ◽  
Chun Feng Chu ◽  
Chun Jie Li ◽  
Zhen Jia Zhang

Coal gasification wastewater, as a typical industrial wastewater has poor biodegradability and high toxicity. In this paper, simple anaerobic shaker test was conducted to investigate the degradation of hydroquinone in coal gasification wastewater. Anaerobic sludge shaker test were run for 27, 50 and 73 days, the phenol concentration were adjusted to 300 mg/L and 500 mg/L with pH 7.5, respectively. The experimental results also showed that this system could effectively deal with COD and phenol removal and remain in a stable level when the operational parameters altered while the hydrolysis acidification at 45h is appropriate. Organics degradation and transformation of anaerobic coal gasification wastewater samples at 12h, 24h, 36h, 48h, and 60h were analyzed by GC/MS and it was found that hydrolysis acidification played an important role in degradation of methyl phenol, hydroquinone and refractory compounds. Therefore, the results illustrated that the simple anaerobic shaker process is an easy way for pollutant degradation and treat coal gasification wastewater effectively.


Sign in / Sign up

Export Citation Format

Share Document