A New Modified SVD Method Applied in 3D Acoustic Temperature Field Reconstruction

2013 ◽  
Vol 732-733 ◽  
pp. 218-223 ◽  
Author(s):  
Wei Yang ◽  
Xiao Liang Zhu

In order to solve the ill-posed problem in 3D acoustic temperature field reconstruction, the paper proposed a new modified singular value decomposition (SVD) method.According to their reliability ,singular values were divided into three parts and got various degree of modification respectively. To verify the performance of the new algorithm based on the modified SVD method,two model temperature fields were reconstructed when the signal-to-noise ratio (SNR) of sound flight-time data was 50dB , 40dB and 30dB respectively.And the results were compared with those based on routine Truncated singular value decomposition (TSVD) and Tikhonov methods. Simulation results show that the new algorithm has higher precision, better anti-noise ability than the routine methods and it is more suitable for the complex temperature fields reconstruction, thus it is expected to be used for temperature field reconstruction on-line.

Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3301 ◽  
Author(s):  
Liang Wu ◽  
Qian Xu ◽  
Janne Heikkilä ◽  
Zijun Zhao ◽  
Liwei Liu ◽  
...  

The navigation accuracy of a star sensor depends on the estimation accuracy of its optical parameters, and so, the parameters should be updated in real time to obtain the best performance. Current on-orbit calibration methods for star sensors mainly rely on the angular distance between stars, and few studies have been devoted to seeking new calibration references. In this paper, an on-orbit calibration method using singular values as the calibration reference is introduced and studied. Firstly, the camera model of the star sensor is presented. Then, on the basis of the invariance of the singular values under coordinate transformation, an on-orbit calibration method based on the singular-value decomposition (SVD) method is proposed. By means of observability analysis, an optimal model of the star combinations for calibration is explored. According to the physical interpretation of the singular-value decomposition of the star vector matrix, the singular-value selection for calibration is discussed. Finally, to demonstrate the performance of the SVD method, simulation calibrations are conducted by both the SVD method and the conventional angular distance-based method. The results show that the accuracy and convergence speed of both methods are similar; however, the computational cost of the SVD method is heavily reduced. Furthermore, a field experiment is conducted to verify the feasibility of the SVD method. Therefore, the SVD method performs well in the calibration of star sensors, and in particular, it is suitable for star sensors with limited computing resources.


2019 ◽  
Vol 25 (6) ◽  
pp. 1246-1262 ◽  
Author(s):  
Zhen Li ◽  
Weiguang Li ◽  
Xuezhi Zhao

The selection of effective singular values using the singular value decomposition (SVD) method has always been a hot topic. In this paper, we found that there was a special relationship between effective singular values and feature frequency components. Theoretical derivations illustrated that each frequency component produced two adjacent nonzero singular values with one ranking another closely. Size of singular values was directly proportional to amplitude of feature frequency. The number of singular values was only related to the number of feature frequency components. For these discoveries, a novel feature frequency separation method based on SVD was proposed, through which axis orbits of large rotating machines were readily purified. The results show that the algorithm was very accurate in feature frequency extraction.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2284
Author(s):  
Krzysztof Przystupa ◽  
Mykola Beshley ◽  
Olena Hordiichuk-Bublivska ◽  
Marian Kyryk ◽  
Halyna Beshley ◽  
...  

The problem of analyzing a big amount of user data to determine their preferences and, based on these data, to provide recommendations on new products is important. Depending on the correctness and timeliness of the recommendations, significant profits or losses can be obtained. The task of analyzing data on users of services of companies is carried out in special recommendation systems. However, with a large number of users, the data for processing become very big, which causes complexity in the work of recommendation systems. For efficient data analysis in commercial systems, the Singular Value Decomposition (SVD) method can perform intelligent analysis of information. With a large amount of processed information we proposed to use distributed systems. This approach allows reducing time of data processing and recommendations to users. For the experimental study, we implemented the distributed SVD method using Message Passing Interface, Hadoop and Spark technologies and obtained the results of reducing the time of data processing when using distributed systems compared to non-distributed ones.


2019 ◽  
Vol 13 (28) ◽  
pp. 52-67
Author(s):  
Noor Zubair Kouder

In this work, satellite images for Razaza Lake and the surrounding areadistrict in Karbala province are classified for years 1990,1999 and2014 using two software programming (MATLAB 7.12 and ERDASimagine 2014). Proposed unsupervised and supervised method ofclassification using MATLAB software have been used; these aremean value and Singular Value Decomposition respectively. Whileunsupervised (K-Means) and supervised (Maximum likelihoodClassifier) method are utilized using ERDAS imagine, in order to getmost accurate results and then compare these results of each methodand calculate the changes that taken place in years 1999 and 2014;comparing with 1990. The results from classification indicated thatwater and hills are decreased, while vegetation, wet land and barrenland are increased for years 1999 and 2014; comparable with 1990.The classification accuracy was done by number of random pointschosen on the study area in the field work and geographical data thencompared with the classification results, the classification accuracy forthe proposed SVD method are 92.5%, 84.5% and 90% for years1990,1999,2014, respectivety, while the classification accuracies forunsupervised classification method based mean value are 92%, 87%and 91% for years 1990,1999,2014 respectivety.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Muhammad Mohsin Riaz ◽  
Abdul Ghafoor

Singular value decomposition and information theoretic criterion-based image enhancement is proposed for through-wall imaging. The scheme is capable of discriminating target, clutter, and noise subspaces. Information theoretic criterion is used with conventional singular value decomposition to find number of target singular values. Furthermore, wavelet transform-based denoising is performed (to further suppress noise signals) by estimating noise variance. Proposed scheme works also for extracting multiple targets in heavy cluttered through-wall images. Simulation results are compared on the basis of mean square error, peak signal to noise ratio, and visual inspection.


2019 ◽  
Vol 22 (12) ◽  
pp. 2687-2698 ◽  
Author(s):  
Zhen Chen ◽  
Lifeng Qin ◽  
Shunbo Zhao ◽  
Tommy HT Chan ◽  
Andy Nguyen

This article introduces and evaluates the piecewise polynomial truncated singular value decomposition algorithm toward an effective use for moving force identification. Suffering from numerical non-uniqueness and noise disturbance, the moving force identification is known to be associated with ill-posedness. An important method for solving this problem is the truncated singular value decomposition algorithm, but the truncated small singular values removed by truncated singular value decomposition may contain some useful information. The piecewise polynomial truncated singular value decomposition algorithm extracts the useful responses from truncated small singular values and superposes it into the solution of truncated singular value decomposition, which can be useful in moving force identification. In this article, a comprehensive numerical simulation is set up to evaluate piecewise polynomial truncated singular value decomposition, and compare this technique against truncated singular value decomposition and singular value decomposition. Numerically simulated data are processed to validate the novel method, which show that regularization matrix [Formula: see text] and truncating point [Formula: see text] are the two most important governing factors affecting identification accuracy and ill-posedness immunity of piecewise polynomial truncated singular value decomposition.


Geophysics ◽  
1993 ◽  
Vol 58 (11) ◽  
pp. 1655-1661 ◽  
Author(s):  
Reinaldo J. Michelena

I perform singular value decomposition (SVD) on the matrices that result in tomographic velocity estimation from cross‐well traveltimes in isotropic and anisotropic media. The slowness model is parameterized in four ways: One‐dimensional (1-D) isotropic, 1-D anisotropic, two‐dimensional (2-D) isotropic, and 2-D anisotropic. The singular value distribution is different for the different parameterizations. One‐dimensional isotropic models can be resolved well but the resolution of the data is poor. One‐dimensional anisotropic models can also be resolved well except for some variations in the vertical component of the slowness that are not sensitive to the data. In 2-D isotropic models, “pure” lateral variations are not sensitive to the data, and when anisotropy is introduced, the result is that the horizontal and vertical component of the slowness cannot be estimated with the same spatial resolution because the null space is mostly related to horizontal and high frequency variations in the vertical component of the slowness. Since the distribution of singular values varies depending on the parametrization used, the effect of conventional regularization procedures in the final solution may also vary. When the model is isotropic, regularization translates into smoothness, and when the model is anisotropic regularization not only smooths but may also alter the anisotropy in the solution.


Sign in / Sign up

Export Citation Format

Share Document