One Method for Estimating Normal Contact Stiffness with Ra and Adhesion Rate

2013 ◽  
Vol 734-737 ◽  
pp. 2443-2450
Author(s):  
Peng Wang ◽  
Tian Yun Li ◽  
Xiang Zhu ◽  
Guo Xiong Pan

Based on the fractal contact theory, the model about the relation between normal contact stiffness and material properties as well as fractal parameters is established. Then by making use of the relation between fractal parameters and surface roughness, a new method for estimating the normal contact stiffness is put forward. The numerical results indicate that the contact stiffness increases as surface roughness decreases or adhesion rate increases. When the adhesion rate is constant, contact stiffness changes a little whileRa≥6.3μm, but the change is relatively bigger whenRa≤6.3μm. Considering both the cost of surface machining and the influence of contact stiffness on the whole system, the surface roughness is suggested to beRa=6.3μm. The results provide theoretical supports for vibration isolation analysis with gaskets and the process of low-noise construction.

Author(s):  
Manuel Salgado-Cruz ◽  
Claudia Cortés-García ◽  
Dariusz Slawomir Szwedowicz-Wasik ◽  
Eladio Martínez-Rayón

This article describes the effect of the roughness size on the axial slip strength between the parts of shaft/hub joints with interference fit. The surface roughness was obtained from a turning process with different finishes (fine, medium and rough). A finite element modeling was developed, which uses a normal contact stiffness equivalent to the size of the surface roughness between the joint pieces to represent the real contact. In order to validate the numerical model, theoretical results of contactpressure and extraction force of the shaft/hub joint with smooth elements were compared with the corresponding numerical results obtained. The numerical results from studies that considered the size of the surface roughness showed that the axial load capacity of the joint decreased with larger roughness.


2015 ◽  
Vol 11 (2) ◽  
pp. 121-135
Author(s):  
Miloš Kekeliak ◽  
Jozef Gocál ◽  
Josef Vičan

Abstract In this paper, numerical modelling of the traditional carpentry connection with mortise and tenon is presented. Numerical modelling is focused on its stiffness and the results are compared to results of experimental tests carried out by (Feio, 2005) [6]. To consider soft behaviour of wood in carpentry connections, which are related to its surface roughness and geometrical accuracy of the contact surfaces, the characteristics of the normal contact stiffness, determined experimentally, are introduced in the numerical model. Parametric study by means of numerical modelling with regard to the sensitivity of connection stiffness to contact stiffness is presented. Based on the study results, in conclusion there are presented relevant differences between the results of numerical modelling and experimental tests (Feio, 2005) [6].


Author(s):  
K. S. Parel ◽  
R. J. Paynter ◽  
D. Nowell

Measurements with digital image correlation of normal and tangential contact stiffness for ground Ti-6Al-4V interfaces suggest a linear relationship between normal contact stiffness and normal load and a linear relationship between tangential contact stiffness and tangential load. The normal contact stiffness is observed approximately to be inversely proportional to an equivalent surface roughness parameter, defined for two surfaces in contact. The ratio of the tangential contact stiffness to the normal contact stiffness at the start of tangential loading is seen to be given approximately by the Mindlin ratio. A simple empirical model is proposed to estimate both the normal and tangential contact stiffness at different loads for a ground Ti-6Al-4V interface, on the basis of the equivalent surface roughness and the coefficient of friction.


2013 ◽  
Vol 760-762 ◽  
pp. 2064-2067 ◽  
Author(s):  
Jing Fang Shen ◽  
Ke Xiang Wu ◽  
Fei Yang

In this article, according to WenShuHua and Zhangxueniang fractal model, we point out the deficiency. Based on the fractal theory and Zhang, Wens contact stiffness fractal model, this paper puts forward Gamma distribution of rough joint surface normal contact stiffness. This paper considers micro convex body for ellipsoid, contact area for elliptic. This is slightly convex body for sphere hypothesis is more close to the actual situation. At the same time by using statistics theory, considering the contact ellipse long, short axis a and b are greater than zero, the assumption of a and b to two-dimensional Gamma distribution, it is more suitable for engineering practice.


2011 ◽  
Vol 328-330 ◽  
pp. 336-345
Author(s):  
Guo Sheng Lan ◽  
Xue Liang Zhang ◽  
Hong Qin Ding ◽  
Shu Hua Wen ◽  
Zhong Yang Zhang

Through the analysis and research on three fractal models of normal contact stiffness of joint interfaces, the differences between them can be found. Furthermore, numerical simulation was carried out to obtain the complicated nonlinear relations between normal contact stiffness and the normal load. The results show that the normal contact stiffness increases with the normal load, decreases with G but complicatedly varies with D. According to different fractal dimension, we can chose an appropriate one among the three fractal models of normal contact stiffness of joint interfaces when describing normal contact stiffness of joint interfaces.


Author(s):  
Yongquan Zhang ◽  
Hong Lu ◽  
Xinbao Zhang ◽  
He Ling ◽  
Wei Fan ◽  
...  

Considering the rough surface as a fractal model makes the research of contact parameters more practical. In the fractal model of the machined surface, the parameters describing the surface topography are independent of the measurement resolution. Based on the elastic, elasto-plastic and plastic deformations of a single pair of contact asperities, a normal contact stiffness model using the fractal model for surface topography description is proposed in this paper. The specimens machined by milling and grinding methods are used to verify the proposed contact stiffness model based on the fractal theory. The experimental and theoretical results indicate that the proposed contact stiffness model is appropriate for the machined joint surfaces.


2015 ◽  
Vol 28 (1) ◽  
pp. 33-39 ◽  
Author(s):  
Zhiqiang Liu ◽  
Junping Shi ◽  
Fusheng Wang ◽  
Zhufeng Yue

Sign in / Sign up

Export Citation Format

Share Document