Enhanced Luminescence of Terbium Complexes with 2,3-Pyrazinedicarboxylate by Y(III) Doping

2013 ◽  
Vol 750-752 ◽  
pp. 1007-1010
Author(s):  
Ai Ling Wang ◽  
Hai Xia Zhang ◽  
Kai Kong ◽  
Huan Huan Li ◽  
Hua Wang ◽  
...  

Ten kinds of terbium doped inert yttrium complexes with 2,3-pyrazinedicarboxylate (2,3-pzdc2-) have been synthesized. Characterization results indicate that the complexes have the compositions of Tb (pzdc)1.55H2O and TbxYy(pzdc)1.55H2O (x:y=0.10:0.90; 0.20:0.80; 0.30:0.70; 0.40:0.60; 0.60:0.40; 0.70:0.30; 0.80:0.20; 0.90:0.10). IR spectra show that the lanthanide ions coordinate with the carboxylic oxygen atoms and nitrogen atoms of the ligands. Luminescence spectra show that the Y(III) ions can remarkably increase the luminescent intensities of terbium complexes. And Tb0.7Y0.3(pzdc)1.55H2O exhibits the strongest luminescent emission. Furthermore, the doped lanthanide complexes show longer luminescence lifetimes and higher quantum yields. The enhanced luminescence efficiencies of Tb3+ions in the doped complexes may result from intramolecular energy transfer as well as the decrease of the self-quench of the Tb3+ions induced by the doped Y(III) ions.

2011 ◽  
Vol 399-401 ◽  
pp. 963-966
Author(s):  
Hai Xia Zhang ◽  
Rui Jun Ma ◽  
Hai Bin Chu ◽  
Ming Yan Zhao ◽  
Ying Nan Chen ◽  
...  

Seven europium complexes of 2-pyrazinecarboxylate (pyca) doped with inert fluorescent lanthanide ions (La3+, Y3+) have been synthesized. Elemental analysis, IR spectroscopy, absorption spectroscopy and TG-DSC analysis showed that the complexes have the formulas of Eu(pyca)3•3H2O and EuxRE1-x(pyca)3•3H2O (RE=La, Y; x = 0.7,0.5,0.3), respectively. The lanthanide ions coordinated with carboxylic oxygen atoms and nitrogen atoms of pyca. Luminescence spectra and luminescence life-times of the complexes have been measured and their quantum yields were calculated. The results showed that the existence of La3+and Y3+ions could enhance the luminescence intensity and quantum yield of the europium complexes, which may arise from the intramolecular energy transfer between the inert fluorescent lanthanide ions and Eu3+ion. Those doped complexes have the advantages of strong luminescence, low cost and practical application value.


2021 ◽  
Author(s):  
Nicolaj Kofod ◽  
Lea Gundorff Nielsen ◽  
Thomas Just Sørensen

The trivalent lanthanide ions show optical transitions between energy levels within the 4f shell. All these transitions are formally forbidden according to the quantum mechanical selection rules used in molecular photophysics. Nevertheless, highly luminescent complexes can be achieved, and terbium(iii) and europium(iii) ions are particularly efficient emitters. This report started when an apparent lack of data in the literature led us to revisit the fundamental photophysics of europium(iii). The photophysical properties of two complexes – [Eu.DOTA(MeOH-d4)]- and [Eu(MeOH-d4)9]3+ – were investigated in deuterated methanol at five different temperatures. Absorption spectra showed decreased absorption cross sections as the temperature was increased. Luminescence spectra and time-resolved emission decay profiles showed a decrease in intensity and lifetime as a temperature was increased. Having corrected the emission spectra for the actual number of absorbed photons and differences in non-radiative pathways, the relative emission probability was revealed. These were found to increase with increasing temperature. The transition probability for luminescence was shown to increase with temperature, while the transition probability for light absorption decreased. The changes in transition probabilities were correlated to a change in the symmetry of the absorber or emitter, with an average increase in symmetry lowering absorption cross section and access to more asymmetric structures increasing the emission rate constant. Determining luminescence quantum yields and the Einstein coefficient for spontaneous emission allowed us to conclude that lowering symmetry increases both. Further, it was found that collisional self-quenching is an issue for lanthanide luminescence, when high concentrations are used. Finally, detailed analysis revealed results that show the so-called ‘Werts’ method’ for calculating radiative lifetimes and intrinsic quantum yields are based on assumption that does not hold for the two systems investigated here. We conclude that we are lacking a good theoretical description of the intraconfigurational f-f transition, and that there are still aspects of fundamental lanthanide photophysics to be explored.<br>


2001 ◽  
Vol 05 (05) ◽  
pp. 481-485 ◽  
Author(s):  
YU. KOROVIN ◽  
Z. ZHILINA ◽  
N. RUSAKOVA ◽  
V. KUZ'MIN ◽  
S. VODZINSKY ◽  
...  

New complexes of ytterbium with porphyrins containing crown- and other oxygen-containing cyclic substituents were obtained. The absorption, excitation, ligand luminescence and 4f-luminescence spectra have been investigated. It has been shown that 4f-luminescence of ytterbium Yb ( III ) ions was a result of the intramolecular energy transfer from the triplet level of the ligands to the resonance 2F5/2 level of Yb ( III ). It has been also established that in presence of alkali metal Na , K and Cs the dimer complexes (sandwich-type) of ytterbium-crown-porphyrin were formed. Molecular luminescence of the porphyrin matrix was quenched completely in these dimers, but at the same time the quantum yield and lifetime of 4f-luminescence increase in the complexes.


2020 ◽  
Vol 22 (6) ◽  
pp. 3683-3690
Author(s):  
Shun Omagari ◽  
Martin Vacha

This work theoretically shows that the intrinsic quantum yields are different between ligand excitation and direct lanthanide excitation in the presence of back energy transfer.


2020 ◽  
Author(s):  
Min Zeng ◽  
Federico Locardi ◽  
Dimitrije Mara ◽  
Zeger Hens ◽  
Rik Van Deun ◽  
...  

The accessible emission spectral range of lead halide perovskite (LHP) CsPbX3 (X = Cl−, Br−, I−) nanocrystals (NCs) has remained so far limited to wavelengths below 1 μm, corresponding to the emission line of Yb3+, whereas the direct sensitization of other near-infrared (NIR) emitting lanthanide ions is unviable. Herein, we present a general strategy to enable intense NIR emission from Er3+ at ~1.5 μm, Ho3+ at ~1.0 μm and Nd3+ at ~1.06 μm through a Mn2+-mediated energy-transfer pathway. Steady-state and time-resolved photoluminescence studies show that energy-transfer efficiencies of about 39%, 35% and 70% from Mn2+ to Er3+, Ho3+ and Nd3+ are obtained, leading to photoluminescence quantum yields of ~0.8%, ~0.7% and ~3%, respectively. This work provides guidance on constructing energy-transfer pathways in semiconductors and opens new perspectives for the development of lanthanide-functionalized LHPs as promising materials for optoelectronic devices operating in the NIR region.


2012 ◽  
Vol 271-272 ◽  
pp. 55-59
Author(s):  
Ming Yan Zhao ◽  
Rui Jun Ma ◽  
Ying Nan Chen ◽  
Hai Xia Zhang ◽  
Kai Kong ◽  
...  

Nine europium complexes with 2-pyrazinecarboxylic acid (Hpyca) and butanedioic acid (HBDA) were synthesized and characterized by elemental, IR, EDTA titration, ICP, and TG-DSC analyses. The results show that the complexes have the compositions of Eu(Pyca)(BDA)•2H2O, Eu0.7La0.3(Pyca)(BDA)•2H2O, Eu0.6La0.4(pyca)(BDA)•3H2O, Eu0.5La0.5(pyca)(BDA)•4H2O, Eu0.7Y0.3(Pyca)(BDA)•3H2O, Eu0.6Y0.4 (Pyca)(BDA)•2H2O, Eu0.5Y0.5(Pyca)(BDA)•3H2O, Eu0.7Gd0.3(Pyca)(BDA)•2H2O and Eu0.5Gd0.5(Pyca)(BDA)•2H2O. IR spectra indicate that lanthanide ions coordinate with the carboxylic oxygen atoms and nitrogen atoms of Hpyca and oxygen atoms of HBDA. Luminescence spectra show that the introduction of La3+, Y3+ or Gd3+ in the complexes does not change the luminescence peak position, but remarkably increases luminescent intensity of the europium complexes. The quantum yields of the complexes doped with inert lanthanide ions (La3+, Y3+ or Gd3+) are higher than that of the undoped europium complex. Furthermore, doping the inert lanthanide ions in right proportion can increase the luminescence lifetimes of complexes. Those complexes are of strong luminescence, low cost and practical value.


2011 ◽  
Vol 308-310 ◽  
pp. 643-646
Author(s):  
Xiao Ling Cui ◽  
Xin Ming Shi ◽  
Shi You Li

A series of lanthanide complexes with acetylacetonate and a new asymmetrical 5-[p-(4-fluorobenzoyloxy)-m-ethyloxy]phenyl-10,15,20-triphenylporphyrin were prepared and characterized by elemental analyses, molar conductance, UV-Vis, IR, 1H NMR, luminescence spectra and themal analysis. Quantum yields of Q band fluorescence are in the region 0.073-0.097 at room temperature. Complexes have higher stability (decompose until 211°C). The structure that both the porphyrin behaved as a tetradentate ligand and acetylacetonate as a bidentate ligand are coordinated to a rare earth ion also has been proposed.


Sign in / Sign up

Export Citation Format

Share Document