Wear of a Brazed Diamond Grinding Wheel with Diamond Grits Covered with Brazing Alloy

2009 ◽  
Vol 76-78 ◽  
pp. 125-130 ◽  
Author(s):  
Guo Qin Huang ◽  
Hei Jie Chen ◽  
Hui Huang ◽  
Xi Peng Xu

The wear of a brazed diamond wheel with diamond grits covered with brazing alloy was investigated in comparison with a traditional brazed wheel whose grits were without covering. The two wheels were brazed in vacuum furnace and grits on one of them were overlaid with a thin layer of brazing alloy. The wear of the two wheels was tested through grinding of granite, during which grinding forces were measured and the wear states of diamond grits were observed. It is shown that grits covered with brazing alloy exhibited stronger self-sharpening ability and fracture resistance. Therefore, the wheel with covered diamonds performed lower grinding force and better wear performance.

2015 ◽  
Vol 658 ◽  
pp. 120-124
Author(s):  
Tachai Luangvaranunt ◽  
Natthawat Tangkaratanakul ◽  
Patchanok Sakultantimetha

Diamond grinding wheel is used in high precision grinding process, when work piece has a very high hardness. For a specific grinding interval, the wheel must be properly dressed, in order to remove swarf, sharpen the worn diamond grits, open up new diamond protrusions, and recondition the bond material. Dressing of diamond grinding wheel by alumina dressing tool has been simulated in a pin-on-disk machine in the research. Sharpening of the wheel is indicated by the increase of its roughness value, and surface microstructure with protruding sharp diamond grits. It was found that increasing of sliding distant from 100 to 500 m will increase the roughness of the wheel. The increase of contact load from 10 to 20 N will also increase roughness of the wheel, and the severity of wheel wear, indicated by high values of friction coefficient. A proper dressing of this nickel bonded SD1200 diamond wheel is by sliding against alumina dressing tool for at least 300 m under 10 N load. Sliding velocity has minimal effect to the results. A too large sliding distant and load will cause severe damage to wheel surface, and severe wheel wear, indicated by its large mass loss.


2013 ◽  
Vol 797 ◽  
pp. 234-239 ◽  
Author(s):  
Li Fei Liu ◽  
Fei Hu Zhang ◽  
Chun Hui Li ◽  
Jiang Chen ◽  
Min Hui Liu

In this paper, experiments are conducted to study the characters of Ultrasonic Assisted Grinding (UAG) and Conventional Grinding (CG), diamond grinding wheel is used in experiments, grinding forces and surface roughness are measured in both UAG and CG. The effects of different parameters on grinding force, surface roughness and force ratio are discussed. The results show that the grinding force and surface roughness in UAG is smaller than those in CG. The force ratio in UAG is lower than that in CG, which reveals that the grinding wheel has a good wear-resistant property in UAG process.


2006 ◽  
Vol 532-533 ◽  
pp. 381-384 ◽  
Author(s):  
Shu Sheng Li ◽  
Jiu Hua Xu ◽  
Bing Xiao ◽  
Ming Hua Yan ◽  
Yu Can Fu ◽  
...  

A kind of brazed monolayer diamond grinding wheel was developed with a relatively regular distribution of grains on the wheel surface. Grinding performances of this kind of brazed wheel in the surface grinding of cemented carbide were studied. The experiment results show that the grinding forces ratio becomes higher with the increasing of the maximum undeformed chip thickness and the specific energy falls with the material removal rate during grinding cemented carbide process. Under certain grinding conditions, the material was removed almost through plastic deformation and good surface quality is gained. Furthermore, the grits of the brazed diamond grinding wheel fail mainly in attritious wear modes other than pull-out ones in conventional electroplated and sintered diamond tools, which indicates that the strong retention of brazing alloy to the diamond grits and longer service life of this kind of wheel.


2007 ◽  
Vol 364-366 ◽  
pp. 578-583 ◽  
Author(s):  
Qing Liang Zhao ◽  
Ekkard Brinksmeier ◽  
Otmann Riemer ◽  
Kai Rickens

In order to realize ductile machining of optical glasses using mono-layer nickel electroplated coarse-grained diamond grinding wheel, a novel conditioning technique features using a copper bonded diamond grinding wheels of 15m grain size dressed by ELID (electrolytic inprocess dressing) to condition the 46m grain sized diamond wheel has been developed. During the conditioning process, a force transducer was used to monitor the conditioning force, a coaxial optical distance measurement system was used to in-situ monitor the modified wheel surface status. White-light interferometry (WLI), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the conditioned wheel surface status as well as the ground optical glass surface topography correspondingly. The experimental result indicates that a minimized wheel radial run-out error of less than 2μm as well as the top-flattened diamond grains of constant wheel peripheral envelop profile were generated on a 5-axis ultra-precision machine tool. The grinding experiment proved that the well conditioned 46μm coarse-grained diamond wheel can be used in realizing the ductile grinding of optical glass BK7, which indicates that the newly developed conditioning technique is feasible and applicable to introduce the coarse-grained diamond wheels into precision machining of brittle and hard-to-machine materials.


Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 625 ◽  
Author(s):  
Yanjun Lu ◽  
Wang Luo ◽  
Xiaoyu Wu ◽  
Chaolan Zhou ◽  
Bin Xu ◽  
...  

In this paper, in view of low grinding efficiency and poor ground surface quality of sapphire glass, the coarse diamond grinding wheel dressed by dry impulse electrical discharge was proposed to perform efficient and precise grinding machining of sapphire glass. The dry electrical discharge dressing technology was employed to obtain high grain protrusion and sharp micro-grain cutting edges. The influences of grinding process parameters such as wheel speed, depth of cut and feed speed on the ground surface quality, grinding force and grinding force ratio on sapphire glass were investigated, and the relationship between grinding force and ground surface quality was also revealed. The experimental results show that the grain protrusion height on the surface of a coarse diamond grinding wheel dressed by dry electrical discharge can reach 168.5 µm. The minimum line roughness Ra and surface roughness Sa of ground sapphire glass surface were 0.194 µm and 0.736 µm, respectively. In order to achieve highly efficient ground quality of sapphire glass, the depth of cut was controlled within 7 µm, and the wheel speed and feed speed were 3000–5000 r/min and 10–20 mm/min, respectively. The influences of feed speed and wheel speed on grinding force ratio were more significant, but the influence of depth of cut was little.


2014 ◽  
Vol 1027 ◽  
pp. 159-162 ◽  
Author(s):  
Kun Zhang ◽  
Hong Hua Su ◽  
Feng Ming Dai

A monolayer brazed diamond grinding wheel was dressed 23 times with a plate wheel. The grinding forces were measured during the grinding experiments which carried out on SiC ceramics after each dressing interval. The surface roughness of SiC ceramics was also measured. In this study, the dullness of the grinding wheel during the dressing procedure is mainly discussed. The results showed that the surface roughness of SiC ceramics reduced a lot after dressing which means the dressed grinding wheel can meet the requirements of precision machining. On the premise of this, there was no obvious dullness occurred on the grits of the grinding wheel during dressing because new cutting edges had emerged.


Author(s):  
P. Suya Prem Anand ◽  
N. Arunachalam ◽  
L. Vijayaraghavan

Advanced ceramic materials like sintered and presintered zirconia are frequently used in biomedical applications, where minimum quantity lubrication (MQL) assisted grinding is required to achieve a good surface finish instead of conventional flood coolant. However, insufficient cooling and wheel clogging are the major problems that exist in the MQL grinding process, which depends upon the type of work piece material and the grinding wheel being used. The present study is to determine the performance of the grinding wheels on presintered zirconia under MQL conditions in terms of grinding forces, specific energy, surface integrity, and wheel wear. Experiments are conducted with two different types of grinding wheels as silicon carbide (SiC) and diamond grinding wheels under the same condition. The results indicated that the diamond wheel provided a better surface finish and reduced tangential force under MQL condition, compared to the conventional SIC wheel. This was due to the reduction of wheel loading in the diamond grinding wheel. The specific energy of diamond grinding wheel was reduced with higher material removal rate compared to the conventional SiC wheel. The ground surfaces generated by the diamond grinding wheel showed fine grinding marks with better surface finish. The percentage of G-ratio calculated for the diamond wheel was higher than the SiC wheel by 77%. This was due to the sliding of the grains and less wheel loading in the diamond wheel. The cost difference between the corresponding wheels was discussed to improve the productivity of the grinding process.


2013 ◽  
Vol 652-654 ◽  
pp. 2205-2208
Author(s):  
Qiao Ping Wu ◽  
Zhao Hui Deng ◽  
Yan Li Gong

It is aimed at developing a new diamond wheel in order to overcome the shortages of traditional grinding wheel, such as the abrasive easily fall off the grinding wheel prematurely, high grinding temperature, random grits distribution and the loading problems become more severe in grinding process. And further study on the grinding temperature of the new diamond wheel prepared in comparison with traditional resin-bonded diamond grinding wheel in machining Al2O3 ceramic. The prepared new diamond wheel has many diamond fibers involved in grinding process which are artificially ordered, diamond grits are not easily fall off, and it has big chip-pocket space and heat dissipating capability. The experimental results indicated that the grinding temperature of the new diamond wheel in comparison with the conventional diamond wheel under the same conditions was decreased by 80°C-120°C.


Sign in / Sign up

Export Citation Format

Share Document