Software Design and Implementation of 3D Multi-GNSS Visualization System

2013 ◽  
Vol 765-767 ◽  
pp. 936-940
Author(s):  
Xi Cai ◽  
Cheng Dong Xu ◽  
Chun Sheng Hu

In order to provide technical supports and visualization tools to the multi-GNSS related researches, 3D multi-GNSS visualization system (3DMVS) is designed and implemented. In this paper, the system requirements are analyzed at first and four modules (user interface module; display module; date calculating module; 3D models library module) are designed to realize the 3D visualization of the earth, satellites and orbits in different navigation system. Then the system general architecture is presented. Next, the system main process, data generation process and data visualization process is introduced. Dataflow between modules are illustrated in details by four steps. The visual C# programming tools and the 3D modeling software ZAM3D are used in the course of system implementation. The system has successfully applied in the related researches of multi-GNSS.

2019 ◽  
Vol 1 ◽  
pp. 1-1
Author(s):  
Xu Zhang ◽  
Wei Zhou ◽  
Jie Shen ◽  
Lukáš Herman ◽  
Yixian Du

<p><strong>Abstract.</strong> Urban waterlogging, as a common natural disaster in China, seriously restricted the development of society. Nowadays, while the computer technology is developing continuously, the urban waterlogging model is also constantly improved. These models can simulate the process of urban waterlogging, but the simulation results are not intuitive. So it is difficult for users to understand how the model works. Therefore, it is important to find a way to show the simulation results so that people can see the waterlogging simulation intuitively. Cesium, as a three-dimensional visualization platform, can reproduce the process of the urban waterlogging. It will make sense if we could show the simulation results on the Cesium platform. Nowadays, many studies focus on both urban waterlogging and visualization methods. However, there are fewer studies on the combination of the two, especially the interactive visualization of urban waterlogging under parameter adjustment. Therefore, this paper mainly focuses on urban three-dimensional interactive visualization method based on Cesium.</p><p>On the one hand, the three-dimensional visualization of the urban waterlogging simulation facilitates the intuitive expression of the simulation results. Without visualization, the results of the simulation are only some complicated and unintuitive figures for most non-experts. On the other hand, visualization based on the Cesium platform can better adapt to the cross-platform application. It can better meet the needs of different terminal devices of different users for the visualization platform, so that users can obtain the disaster information more accurately, consistently and intuitively. It is conducive for management departments to respond to sudden disasters more quickly and efficiently.</p><p>This research aims to propose a three-dimensional dynamic interactive visualization method for urban waterlogging. Particularly, we hope to find out how to integrate urban waterlogging model and 3D visualization platform. With this 3D visualization platform, we can combine the advantages of the SWMM (Storm Water Management Model) and Cesium platform. Using this platform, it will be easier and more effective to respond to disasters for the masses and management departments.</p><p>The following two issues are resolved in this study: i) How do model parameters affect the urban waterlogging simulation and visualization results? ii) How to integrate SWMM and Cesium 3D visualization platform?</p><p>In order to address the above research objectives, we will apply the following methodologies: i) We will analyse the parameters of the SWMM for the urban waterlogging visualization. Under the premise of understanding the development process of the urban waterlogging, we will analyse the modelling principle of the urban waterlogging, the mechanism of each part of the model separately. Then, we will find out the method of determining the model parameters of urban waterlogging and its influence on the simulation visualization results. ii) We will study integration methods of urban waterlogging model and 3D visualization platform. We will analyse the mechanism and process of urban waterlogging. We will also calculate the urban waterlogging process data by the SWMM, and establish a three-dimensional visualization platform by the node.js and Cesium, which can dynamically show the process of urban waterlogging. iii) We will complete the design and implementation of the interactive visualization platform of urban waterlogging. According to the above research, taking the Xianlin Campus of Nanjing Normal University as an example, we will build a dynamic interactive visualization system of urban waterlogging simulation based on Cesium. We will also verify the effectiveness of the system by comparing it with actual flood situation.</p><p>With this study, we expect to answer how model parameters affect the urban waterlogging simulation and visualization results. As expected results, we plan to build an interactive visualization system of urban waterlogging simulation based on Cesium, publish the flood calculation results into the 3D scene. This will make urban waterlogging process shown in the 3D scene. This visualization system is designed for different users, including specialists, government and individual. It means that you can use the system easily even if you are non-cartographers or non-IT-specialists.</p>


Land ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 822
Author(s):  
Ali Asghari ◽  
Mohsen Kalantari ◽  
Abbas Rajabifard

Among 3D models, Building Information Models (BIM) can potentially support the integrated management of buildings’ physical and legal aspects in cadastres. However, there is not a systematic approach to author the cadastral information into the BIM models. Moreover, the common approaches for data validation only check the final cadastral output, and they ignore the data generation steps as potential avenues for validation. Therefore, this study aims to develop the criteria and standards to check the spatial consistency and integrity of BIM-based cadastral data in the process of generating the data. The paper utilises a case study approach as its methodology to investigate the requirements of generating a BIM-based cadastral model and identify the issues within the process. The results include a formative assessment (i.e., multistep validation approach during the data generation) alongside a summative assessment (i.e., one-step validation approach at the end of data generation). This study found the summative assessment alone insufficient for 3D cadastral data validation. The paper concludes that a formative and summative assessment together can improve the validity of the data. The results will potentially bring more efficiency to modern land administration processes by avoiding the accumulation of errors in 3D cadastral data generation.


2021 ◽  
Vol 15 (6) ◽  
pp. 1-22
Author(s):  
Yashen Wang ◽  
Huanhuan Zhang ◽  
Zhirun Liu ◽  
Qiang Zhou

For guiding natural language generation, many semantic-driven methods have been proposed. While clearly improving the performance of the end-to-end training task, these existing semantic-driven methods still have clear limitations: for example, (i) they only utilize shallow semantic signals (e.g., from topic models) with only a single stochastic hidden layer in their data generation process, which suffer easily from noise (especially adapted for short-text etc.) and lack of interpretation; (ii) they ignore the sentence order and document context, as they treat each document as a bag of sentences, and fail to capture the long-distance dependencies and global semantic meaning of a document. To overcome these problems, we propose a novel semantic-driven language modeling framework, which is a method to learn a Hierarchical Language Model and a Recurrent Conceptualization-enhanced Gamma Belief Network, simultaneously. For scalable inference, we develop the auto-encoding Variational Recurrent Inference, allowing efficient end-to-end training and simultaneously capturing global semantics from a text corpus. Especially, this article introduces concept information derived from high-quality lexical knowledge graph Probase, which leverages strong interpretability and anti-nose capability for the proposed model. Moreover, the proposed model captures not only intra-sentence word dependencies, but also temporal transitions between sentences and inter-sentence concept dependence. Experiments conducted on several NLP tasks validate the superiority of the proposed approach, which could effectively infer meaningful hierarchical concept structure of document and hierarchical multi-scale structures of sequences, even compared with latest state-of-the-art Transformer-based models.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2144
Author(s):  
Stefan Reitmann ◽  
Lorenzo Neumann ◽  
Bernhard Jung

Common Machine-Learning (ML) approaches for scene classification require a large amount of training data. However, for classification of depth sensor data, in contrast to image data, relatively few databases are publicly available and manual generation of semantically labeled 3D point clouds is an even more time-consuming task. To simplify the training data generation process for a wide range of domains, we have developed the BLAINDER add-on package for the open-source 3D modeling software Blender, which enables a largely automated generation of semantically annotated point-cloud data in virtual 3D environments. In this paper, we focus on classical depth-sensing techniques Light Detection and Ranging (LiDAR) and Sound Navigation and Ranging (Sonar). Within the BLAINDER add-on, different depth sensors can be loaded from presets, customized sensors can be implemented and different environmental conditions (e.g., influence of rain, dust) can be simulated. The semantically labeled data can be exported to various 2D and 3D formats and are thus optimized for different ML applications and visualizations. In addition, semantically labeled images can be exported using the rendering functionalities of Blender.


2021 ◽  
Vol 7 (1) ◽  
pp. 540-555
Author(s):  
Hayley L. Mickleburgh ◽  
Liv Nilsson Stutz ◽  
Harry Fokkens

Abstract The reconstruction of past mortuary rituals and practices increasingly incorporates analysis of the taphonomic history of the grave and buried body, using the framework provided by archaeothanatology. Archaeothanatological analysis relies on interpretation of the three-dimensional (3D) relationship of bones within the grave and traditionally depends on elaborate written descriptions and two-dimensional (2D) images of the remains during excavation to capture this spatial information. With the rapid development of inexpensive 3D tools, digital replicas (3D models) are now commonly available to preserve 3D information on human burials during excavation. A procedure developed using a test case to enhance archaeothanatological analysis and improve post-excavation analysis of human burials is described. Beyond preservation of static spatial information, 3D visualization techniques can be used in archaeothanatology to reconstruct the spatial displacement of bones over time, from deposition of the body to excavation of the skeletonized remains. The purpose of the procedure is to produce 3D simulations to visualize and test archaeothanatological hypotheses, thereby augmenting traditional archaeothanatological analysis. We illustrate our approach with the reconstruction of mortuary practices and burial taphonomy of a Bell Beaker burial from the site of Oostwoud-Tuithoorn, West-Frisia, the Netherlands. This case study was selected as the test case because of its relatively complete context information. The test case shows the potential for application of the procedure to older 2D field documentation, even when the amount and detail of documentation is less than ideal.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
T Fujiwara ◽  
N Takeda ◽  
M Hatano ◽  
S Nishimura ◽  
I Komuro

Abstract Background Pulmonary hypertension (PH) is characterized by increased pulmonary vascular resistance and right heart failure with progressive narrowing or occlusion of the pulmonary artery. However, the assessment of vascular remodeling is mostly limited to averaged increases in wall thickening, and even the role of vascular endothelial growth factor (VEGF), remains incompletely understood; Although abundantly expressed VEGF is expected to elicit angio-obliteration and the knockout of hypoxia inducible factor (HIF) prevents PH in mice, VEGF inhibitor Sugen exacerbates hypoxia (Hx)-induced PH model, which is referred to as VEGF paradox. Purpose To analyze three-dimensional (3D) spatiotemporal changes of pulmonary microstructure and function, which reflect the disease activity and lead to resolve the paradox. Methods and results We developed a novel 3D visualization system of microstructural networks in whole mouse organ with single-cell resolution, using combined tissue clearing technique called CUBIC and multiphoton excitation microscope. The system enabled the simultaneous 3D evaluation of microvascular structure, invaded macrophages and fibrosis with effective penetration of several mm (whole organ). Three-dimensional observations of PH mice models including Hx, Sugen/Hx, and human-like Alk1+/− hereditary PH models, revealed that not only inward (negative) microvessel remodeling with stenosis, but also marked elongation of microvascular ECs, was evident except Sugen/Hx model at the early phase, which had not been detected by 2D histological sections. Comparable transcriptome analysis revealed that PGC1α, which regulates HIF-independent VEGF expression and angiogenesis, plays an important role in the characteristic response for mitochondrial and microvascular maintenance. PGC1α was up-regulated in the early phage in Hx and Alk1+/− PH models with microvascular angiogenetic change, whereas Sugen/Hx-model did not increase PGC1α expression and did not show microvascular remodeling. Furthermore pulmonary ECs-specific PGC1α-deficient mice exacerbated Hx-PH model with decreased VEGF expression and microvessel density, and administration of Baicalin, a flavonoid enhancing PGC1α expression, ameliorated Hx-PH model with increased VEGF expression. Conclusions The 3D visualization system disclosed an unexpected change of angiogenic microvascular structure in the early phage of PH, which is regulated by EC PGC1α. Microvascular angiogenesis which is induced by up-regulation in PGC1α -VEGF pathway is a crucial factor for compensation of PH in the early phase, which provides a potential novel therapeutic target for PH. Figure 1 Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): JSJP


2019 ◽  
Vol 5 (2) ◽  
pp. 76-82
Author(s):  
Cornelius Mellino Sarungu ◽  
Liliana Liliana

Project management practice used many tools to support the process of recording and tracking data generated along the whole project. Project analytics provide deeper insights to be used on decision making. To conduct project analytics, one should explore the tools and techniques required. The mostcommon tool is Microsoft Excel. Its simplicity and flexibility make project manager or project team members can utilize it to do almost any kind of activities. We combine MS Excel with R Studio to brought data analytics into the project management process. While the data input process still using the old way that the project manager already familiar, the analytic engine could extract data from it and create visualization of needed parameters in a single output report file. This kind of approach deliver a low cost solution of project analytics for the organization. We can implement it with relatively low cost technology onone side, some of them are free, while maintaining the simple way of data generation process. This solution can also be proposed to improve project management process maturity level to the next stage, like CMMI level 4 that promote project analytics. Index Terms—project management, project analytics, data analytics.


Sign in / Sign up

Export Citation Format

Share Document