Desain Study of Pb-Bi Cooled Fast Reactors with Natural Uranium as Fuel Cycle Input Using Special Shuffling Strategy in Radial Direction

2013 ◽  
Vol 772 ◽  
pp. 530-535 ◽  
Author(s):  
Zaki Su’ud ◽  
Feriska H. Irka ◽  
Taufiq Imam ◽  
H. Sekimoto ◽  
P. Sidik

Design study of Pb-Bi cooled fast reactors with natural uranium as fuel cycle input using special radial shuffling strategy has been performed. The reactors utilizes UN-PUN as fuel, Eutectic Pb-Bi as coolant, and can be operated without refueling for 10 years in each batch. Reactor design optimization is performed to utilize natural uranium as fuel cycle input. This reactor subdivided into 6 regions with equal volume in radial directions. The natural uranium is initially put in region 1, and after one cycle of 10 years of burn-up it is shifted to region 2 and the region 1 is filled by fresh natural uranium fuel. This concept is basically applied to all regions. The calculation has been done by using SRAC-Citation system code and JENDL-3.2 library. The effective multiplication factor change increases monotonously during 10 years reactor operation time. There is significant power distribution change in the central part of the core during the BOC and the EOC. It is larger than that in the case of modified CANDLE case which use axial direction burning region move. The burnup level of fuel is slowly grows during the first 15 years but then grow fastly in the rest of burnup history. This pattern is a little bit different from the case of modified CANDLE burnup scheme in Axial direction in which the slow growing burnup period is relatively longer almost half of the burnup history.

Author(s):  
Abu Khalid Rivai ◽  
Minoru Takahashi

Effects of SiC cladding and structure on neutronics of reactor core for small lead-cooled fast reactors have been investigated analytically. The fuel of this reactor was uranium nitride with 235U enrichment of 11% in inner core and 13% in outer core. The reactors were designed by optimizing the use of natural uranium blanket and nitride fuel to prolong the fuel cycle. The fuels can be used without reshuffling for 15 years. The coolant of this reactor was lead. A calculation was also conducted for steel cladding and structure type as comparison with SiC cladding and structure type. The results of calculation indicated that the neutron energy spectrum of the core using SiC was slightly softer than that using steel. The SiC type reactor was designed to have criticality at the beginning of cycle (BOC), although the steel type reactor could not have critical condition with the same size and geometry. In other words, the SiC type core can be designed smaller than the steel type core. The result of the design analysis showed that neutron flux distributions and power distribution was made flatter because the outer core enrichment was higher than inner core. The peak power densities could remain constant over the reactor operation. The consumption capability of uranium was quite high, i.e. 13% for 125 MWt reactor and 25% for 375 MWt reactor at EOC.


Author(s):  
Shang-Chien Wu ◽  
Rong-Jiun Sheu ◽  
Jinn-Jer Peir ◽  
Jenq-Horng Liang

This study proposes a layer-to-layer movement model using a once-through fuel cycle strategy to dynamically simulate the on-line refueling process employed in HTR-10. The MCNPX 2.6.0 computer code and continuous energy data library ENDF/B-VII were used in performing all of the computations. In this study, the pebble bed in the core was equally divided into five layers in the axial direction, and the volume fractions of the fuel and graphite pebbles in the initial core were 0.57 and 0.43, respectively. After each fuel cycle, the bottom layer was discharged from the core and discarded while a new layer containing only fuel pebbles was added to the top layer of the core. Hence, the volume fraction of the fuel pebbles increased with greater operation time. This study further proposes that each fuel cycle is stopped to initiate the refueling process for next fuel cycle whenever the effective multiplication factor (keff) reaches approximately 1.005. The results revealed that spikes in the keff versus reactor operation time are the result of burnup and refueling. The fuel cycle tends to approach an equilibrium cycle after refueling five times. In addition, the axial power distribution tends to change from a bottom-peaked to a top-peaked phenomenon as the fuel cycle number increases. In essence, the axial power distribution is nearly un-changed once the reactor core reaches an equilibrium cycle. This phenomenon is also verified by the corresponding axial burnup distribution, average burnup, and mass of special nuclides as a function of operation time.


2020 ◽  
Vol 1568 ◽  
pp. 012015
Author(s):  
M Ariani ◽  
Supardi ◽  
A Johan ◽  
F Monado ◽  
Z Su’ud ◽  
...  

2015 ◽  
Vol 68 (3) ◽  
pp. 566-572 ◽  
Author(s):  
S. C. Xiao ◽  
Jing Zhao ◽  
X. Heng ◽  
X. Y. Sheng ◽  
Z. Zhou ◽  
...  

2012 ◽  
Vol 260-261 ◽  
pp. 307-311 ◽  
Author(s):  
Menik Ariani ◽  
Z. Su'ud ◽  
Fiber Monado ◽  
A. Waris ◽  
Khairurrijal ◽  
...  

In this study gas cooled reactor system are combined with modified CANDLE burn-up scheme to create small long life fast reactors with natural circulation as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. Therefore using this type of nuclear power plants optimum nuclear energy utilization including in developing countries can be easily conducted without the problem of nuclear proliferation. In this paper, optimization of Small and Medium Long-life Gas Cooled Fast Reactors with Natural Uranium as Fuel Cycle Input has been performed. The optimization processes include adjustment of fuel region movement scheme, volume fraction adjustment, core dimension, etc. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 75 W/cc. With such condition we investigated small and medium sized cores from 300 MWt to 600 MWt with all being operated for 10 years without refueling and fuel shuffling and just need natural Uranium as fuel cycle input. The average discharge burn-up is about in the range of 23-30% HM.


2012 ◽  
Author(s):  
Feriska Handayani Irka ◽  
Zaki Su'ud ◽  
Menik Aryani ◽  
Ferhat Aziz ◽  
H. Sekimoto

Author(s):  
Kevan D. Weaver ◽  
John Gilleland ◽  
Charles Ahlfeld ◽  
Charles Whitmer ◽  
George Zimmerman

A paradigm shift has altered the design targets for advanced nuclear energy systems that use a fast neutron spectrum. Whereas designers previously emphasized the ability of fast reactors to extend global reserves of fissile fuels, the overriding desire now is for reactor technologies that are “cleaner, more efficient, less waste-intensive, and more proliferation-resistant.” (Cheney, 2001, “U.S. National Energy Policy,” National Energy Policy Development Group, Washington, DC) This shift in priorities, along with recent design advances that enable high fuel burnup even when using fuels that have been minimally enriched, creates an opportunity to use fast reactors in an open nuclear fuel cycle. One promising route to this goal exploits a phenomenon known as a traveling wave, which can attain high burnups without reprocessing. A traveling-wave reactor (TWR) breeds and uses its own fuel in place as it operates. Recent design work has demonstrated that TWRs could be fueled almost entirely by depleted or natural uranium, thus reducing the need for initial enrichment. The calculations described here show that a gigawatt-scale electric TWR can achieve a burnup of 20%, which is four to five times that realized in current light water reactors. Burnups as high as 50% appear feasible. The factors that contribute to these high burnups and the implications for materials design are discussed.


2013 ◽  
Vol 14 (1) ◽  
pp. 11 ◽  
Author(s):  
Menik Ariani ◽  
Zaki Su’ud ◽  
Fiber Monado

This article presents the conceptual design of gas-cooled fast reactor (helium), the small size of the long-lived 600 MWth. Early stages of the design is to determine the geometry of the terrace, the value of the volume fraction and the mass fraction of fuel, cladding and coolant structure to calculate the parameters of reactivity, burnup, power distribution and density changes nuclides U238 and Pu239. The calculation is done using SRAC-CITATION code. SRAC code with JENDL-3.2 Data nuclides produced macroscopic cross section values for the eight energy group. Multi-group numerical solution of diffusion equations for 2-D geometry terrace RZ performed by CITATION code. The study results showed that the scheme Modified CANDLE, thermal power output is 600 MWth, with a fuel cycle for 10 years. This reactor has the advantage of requiring only the input of natural uranium in the fuel cycle, without the need for enrichment processes that affect the economic value. Keywords : Reactor, natural uranium, modified candle, burnup


Sign in / Sign up

Export Citation Format

Share Document