Influences of Particle Sizes on Properties of Natural Rubber/Waste Ground Rubber Powders Blends

2013 ◽  
Vol 773 ◽  
pp. 668-672
Author(s):  
Jun Liang Liu ◽  
Ping Liu ◽  
Xiao Qiang Tang ◽  
Dong Zeng ◽  
Xing Kai Zhang ◽  
...  

In this paper, the blends of natural rubber with waste ground rubber powders have been prepared by mechano-chemical activation method. The influences of particle sizes on both processing performances and mechanical properties have been investigated. The results indicated that: the blends with waste ground rubber powders of smaller particle sizes approached to higher surface tensile and easily mechano-chemical activation, which led to the formation of complete homogenous re-vulcanization cross-linking structure and resulted in the improvements of the whole performances of the final products. The tensile strength, the elongation at break and tear strength approached to the highest value of 20.7MPa, 530% and 33.0 kN/m as the 100mesh waste ground rubber powders were used as the starting materials.

2005 ◽  
Vol 21 (3) ◽  
pp. 183-199
Author(s):  
G.K. Jana ◽  
C.K. Das

De-vulcanization of vulcanized elastomers represents a great challenge because of their three-dimensional network structure. Sulfur-cured gum natural rubbers containing three different sulfur/accelerator ratios were de-vulcanized by thio-acids. The process was carried out at 90 °C for 10 minutes in an open two-roll cracker-cum-mixing mill. Two concentrations of de-vulcanizing agent were tried in order to study the cleavage of the sulfidic bonds. The mechanical properties of the re-vulcanized rubber (like tensile strength, modulus, tear strength and elongation at break) were improved with increasing concentrations of de-vulcanizing agent, because the crosslink density increased. A decrease in scorch time and in optimum cure time and an increase in the state of cure were observed when vulcanized rubber was treated with high amounts of de-vulcanizing agent. The temperature of onset of degradation was also increased with increasing concentration of thio-acid. DMA analysis revealed that the storage modulus increased on re-vulcanization. From IR spectroscopy it was observed that oxidation of the main polymeric chains did not occur at the time of high temperature milling. Over 80% retention of the original mechanical properties (like tensile strength, modulus, tear strength and elongation at break) of the vulcanized natural rubber was achieved by this mechanochemical process.


2020 ◽  
Author(s):  
Wenfa Dong ◽  
Ruogu Tang

<div>The water industry used NR was selected for blending with SBR. A series of NR/SBR vulcanizates were prepared through three different vulcanization systems, conventional vulcanization (CV), effective vulcanization (EV) and semi-effective vulcanization (SEV) respectively, basing on each formulation and optimum curing time. We examined the mechanical properties of NR/SBR vulcanizates including tensile strength, tear strength, elongation at break, modulus, Shore A hardnessand and relative volume abrasion. The results indicated that NR/SBR vulcanizates prepared in different systems differed in mechanical properties. Vulcanizates prepared via CV showed higher tensile and tear strength; vulcanizates prepared via EV had high modulus and hardness, and vulcanizates prepared via SEV performed high abrasion resistance. </div>


2008 ◽  
Vol 55-57 ◽  
pp. 341-344 ◽  
Author(s):  
Chanchai Thongpin ◽  
N. Tangchantra ◽  
P. Kaewpetch ◽  
J. Dejkun ◽  
A. Chartsiriwattana

Montmorillonite is a type of clays that has been used to reinforce polymer including rubber. Therefore this research is aimed to modify mechanical properties of natural rubber (NR) using montmorillonite (MMT) comparing with the organic modified montmorillonite (CTAB-MMT) and organic molecule grafted MMT. The affect of MMT, CTAB-MMT and HTMS-g-CTABMMT on cure characteristics of NR were studied. It was found from the research that the increase of MMT content could prolong the scorch time whereas CTAB-MMT and HTMS-g-CTABMMT could shorten the scorch time. The cure times of the compounds in all cases were not much different. In term of mechanical properties, modulus, tensile strength and tear strength of NR/HTMS-g-CTABMMT vulcanizate were higher than those of NR/MMT and NR/CTAB-MMT vulcanizates. Meanwhile, elongation at break of the NR/ HTMS-g-CTABMMT vulcanizate decreased more than the latter cases


2013 ◽  
Vol 773 ◽  
pp. 700-703
Author(s):  
Wen Pan Yang ◽  
Ming Ming Wang ◽  
Jun Liang Liu ◽  
Ming Zhang

In this paper, the rubber blends of natural rubber (NR) with waste ground rubber powders (WGRPs) have been successfully prepared by mechano-chemical activation method and influences of the amounts of WGRPs on the mechanical properties of have been systematically investigated. The results indicated that the mechano-chemical treatment helped for releasing the active agents of WGRPs and formatting homogenous the cross-linked structures of final products. The tensile strengths linearly decreased from 28.6MPa to 12.6MPa while the tear strengths exponentially decreased from 72.8kN/m to 19.4kN/m as the function of the adding amounts of WGRPs.


2011 ◽  
Vol 239-242 ◽  
pp. 2953-2957 ◽  
Author(s):  
Jun Fang Guan ◽  
Hui Qun Yang ◽  
Yan Qiang Yu ◽  
Yang Chen ◽  
Guo Bing Yang ◽  
...  

In the paper, ultrafine quartz, sericite and wollastonite modified with silane coupling agents KH-570 were incorporated into natural rubber(NR). The synergisitc effect on reinforcing NR caused by the three types of fillers was investigated under a same vulcanizing formulation and process. The mechanical properties and microstructure of the vulcanizates were conducted through mechanical testing and scanning electron microscopy(SEM). The results of mechanical properties tests showed that when one of these three fillers was loaded within NR alone, the tear strength and permanent set of NR vulcanizates filled with quartz could reach 27.61 kN m-1and 16.0%, respectively, stress at 300% elongation of NR vulcanizates filled with sericite could attain 4.69 MPa, and the tensile strength and elongation at break of NR vulcanizates filled with wollastonite could get to16.64 MPa and 951.21%, respectively. Under the condition that the filler loadings were 40 parts per hundred parts of rubber(phr), and the mass ratio of quartz, sericite, wollastonite was 1:1:3, the tensile strength and tear strength could come up to 17.33MPa and 27.54 kN m-1. The mechanical properties of NR composites filled with mixtures were found to be complemented by those three types of minerals. SEM results revealed that the fillers are well dispersed in the rubber matrix in the parallel arrangement with a densest stack, and the synergistic reinforcment effect of the fillers on NR was obvious.


2020 ◽  
Author(s):  
Wenfa Dong ◽  
Ruogu Tang

<div>The water industry used NR was selected for blending with SBR. A series of NR/SBR vulcanizates were prepared through three different vulcanization systems, conventional vulcanization (CV), effective vulcanization (EV) and semi-effective vulcanization (SEV) respectively, basing on each formulation and optimum curing time. We examined the mechanical properties of NR/SBR vulcanizates including tensile strength, tear strength, elongation at break, modulus, Shore A hardnessand and relative volume abrasion. The results indicated that NR/SBR vulcanizates prepared in different systems differed in mechanical properties. Vulcanizates prepared via CV showed higher tensile and tear strength; vulcanizates prepared via EV had high modulus and hardness, and vulcanizates prepared via SEV performed high abrasion resistance. </div>


2020 ◽  
Author(s):  
Wenfa Dong ◽  
Ruogu Tang

<div>The water industry used NR was selected for blending with SBR. A series of NR/SBR vulcanizates were prepared through three different vulcanization systems, conventional vulcanization (CV), effective vulcanization (EV) and semi-effective vulcanization (SEV) respectively, basing on each formulation and optimum curing time. We examined the mechanical properties of NR/SBR vulcanizates including tensile strength, tear strength, elongation at break, modulus, Shore A hardnessand and relative volume abrasion. The results indicated that NR/SBR vulcanizates prepared in different systems differed in mechanical properties. Vulcanizates prepared via CV showed higher tensile and tear strength; vulcanizates prepared via EV had high modulus and hardness, and vulcanizates prepared via SEV performed high abrasion resistance. </div>


2017 ◽  
Vol 735 ◽  
pp. 153-157
Author(s):  
Wasinee Pinpat ◽  
Wirunya Keawwattana ◽  
Siree Tangbunsuk

Silica has been used as reinforcing filler in natural rubber for a period of time as it results in excellent properties for NR vulcanizes. Rice husk ash (RHA), bagasse ash (BA), and oil palm ash (OPA) obtained from agricultural wastes are mainly composed of silica in the percentage of 80.00%, 57.33%, and 40.20% by weight, respectively. The effect of these fillers on cure characteristics and mechanical properties of natural rubber materials at fixed silica content at 35 parts per hundred of rubber (phr) were investigated. The results indicated that ashes showed greater cure time compared to that of the silica. The incorporation of ashes into natural rubber gradually improved compression set but significantly decreased tensile strength, elongation at break, and resilience. Moreover, young's modulus increased, while hardness showed no significant change with the addition of ashes. Overall results indicated that ashes could be used as cheaper fillers for natural rubber materials where improved mechanical properties were not critical.


2011 ◽  
Vol 374-377 ◽  
pp. 1325-1329 ◽  
Author(s):  
Wei Bo Huang ◽  
Jia Yu Xiang ◽  
Ping Lv ◽  
Xin Mao Li

Researches of spray pure polyurea technology for hydraulic concrete protection in water conservancy facilities to ensure long term security operation has a great significance. With an emphasis upon mechanical properties and surface morphology of spray pure polyurea coatings comparing before and after aging by means of the artificial accelerated xenon arc lamp(AAXAL) and scanning electron microscope(SEM) in this paper. Besides, the dry-wet circulation resistance performance of coatings wre analyzed through experiment. It is shown that tensile strength, elongation at break and tear strength of coatings increased by 0.2%, 0.5% and 1.7% respectively after AAXAL aging 720h. By contrast, after aging 3000h the results were 22.6%, 3.8% and 17.4% respectively, the tendency of increasing at first and then reducing can be obtained. The mechanical properties reduced slightly for adding defects of coating surface after aging, however, the resistance performance of ultraviolet ray was excellent. The similar development trend of mechanical properties were gained from dry-wet circulation experiment. After aging 200 cycles, the tensile strength and tear strength descended by 4.1% and 1.7% severally but the elongation at break ascended by 5.0%. In a word, it is suggested that the aging of coatings were negligible in dry-wet circulation in short term.


2014 ◽  
Vol 931-932 ◽  
pp. 68-72
Author(s):  
Komsun Temna ◽  
Nitinart Saetung ◽  
Anuwat Saetung

In this work, the sponge rubbers based on cassava starch masterbatch in latex phase with the difference technique (non-gelatinized and gelatinized cassava starch) were preformed. The cassava starch contents from 0 to 70 phr were also studied. The cure characteristic, mechanical and morphological properties were investigated. It was found that the scorch time and cure time were increased with an increasing of cassava starch contents in both techniques. The mechanical properties i.e., tensile strength, elongation at break and tear strength were decreased with an increasing of cassava starch contents, except 500% modulus. However, the sponge based on gelatinized technique gave the better mechanical properties than that of non-gelatinized cassava starch. The SEM micrographs of sponge NR from gelatinized technique were also able to confirm a good interfacial interaction between hydrophilic cassava starch and hydrophobic NR.


Sign in / Sign up

Export Citation Format

Share Document