Study on Radial Deformation of CBN Grinding Wheel Considering Centrifugal Force and Grinding Heat

2013 ◽  
Vol 797 ◽  
pp. 500-504
Author(s):  
Xue Zhi Wang ◽  
Wan Shan Wang ◽  
Tian Biao Yu ◽  
Na Yuan ◽  
Xue Sun

For ultra-high-speed grinding, the deformation of grinding wheel has a greater impact on the machining accuracy. Finite element method was used to study the radial deformation of the CBN grinding wheel considering centrifugal force and grinding heat. The study shows that the effects of centrifugal force and grinding heat are same magnitude, and the proportion changes with the change of grinding speed and grinding force. By finite element analysis, it is possible to solve the grinding wheel the radial deformation and grinding temperature under different grinding speed and grinding force, and it also provides theoretical support for predicting the machining accuracy, compensating precision and avoiding grinding burn.

2009 ◽  
Vol 16-19 ◽  
pp. 480-484 ◽  
Author(s):  
Shi Chao Xiu ◽  
Guang Qi Cai

The dynamic performance of the grinding wheel system is one of the key factors to affect the super-high speed grinding process The excessive centrifugal stress acted on the wheel body can make the wheel rupture due to the super-high rotary speed of the wheel. And the alternating centrifugal force caused by the wheel imbalance can not only make the spindle and bearings vibration and failure, but also lower the machining precision and the wheel life, as well as make against the safety. In this paper, the centrifugal stress of the high speed grinding wheel and its effect on machining process were analyzed by means of finite element analysis and simulation. The alternating centrifugal force and its effect on the wheel spindle system were investigated. Furthermore, the balance precision of super high speed grinding wheel and system was discussed for achieving the high precision, safety and efficiency machining process.


2011 ◽  
Vol 228-229 ◽  
pp. 66-71
Author(s):  
Xiao Hong Lu ◽  
Zhen Yuan Jia ◽  
Zhi Cong Zhang ◽  
Xv Jia

The fixture of motorized spindle significantly affect the vibration of micro high speed CNC milling machine, its performance can directly affect the machining accuracy of the entire micro milling machine. A special fixture of high-speed motorized spindle is designed in the paper and its static characteristics are checked by utilizing ANSYS finite element analysis software. To guarantee the sufficient strength of bolts and the safety of motorized spindle when the motorized spindle runs at high speed, theory analysis method and ANSYS finite element analysis method are used to make the strength check of the fixture. The designed special fixture for high speed motorized spindle plays an important part in the design of high-speed motorized spindle.


2011 ◽  
Vol 215 ◽  
pp. 89-94 ◽  
Author(s):  
Jing Zhu Pang ◽  
Bei Zhi Li ◽  
Jian Guo Yang ◽  
Zhou Ping Wu

This paper presents the effects of spindle system configuration on the dynamic and static characteristics of high speed grinding. A 3D physical mode of high-speed grinding motorized spindle system with rotation speed of 150m/s was provided. The motorized spindle system consists of bearings, rotor, stator, spindle housing and grinding wheel. Based on the finite element method (FEM), the static characteristics, dynamic and the transient response are analyzed based on the finite element analysis software NASTRAN. It is shown that the spindle overhanging, bearing span have a significant effort on spindle deflection. The dynamic analysis shows no resonance will happen during its speed range. The methods and solutions for the motorized spindle system design and engineering applications was given in this paper.


2013 ◽  
Vol 690-693 ◽  
pp. 2395-2402 ◽  
Author(s):  
De Lin Qin ◽  
Feng Wang ◽  
Fang Jian Xi ◽  
Zhi Feng Liu

Aiming at the axle material 30CrMoA high speed cylindrical grinding force calculation problems, a consideration of plowing force grinding force model is established based on the Werner’s theory model of grinding force, and the friction force and plowing force coefficient is defined as variable parameters. On the basis of the finite element analysis software DEFORM-3D, a high speed cylindrical grinding simulation model method is presented.Through the theoretical value and simulation value contrast, a mutual authentication of grinding force model is proposed. According to the simulation analysis results of grinding force and grinding wheel speed, grinding depth and the relationship between the workpiece speed, theoretical and technical guidance for the grinding force calculation and the selection of grinding process parameters are provided.


2010 ◽  
Vol 126-128 ◽  
pp. 154-158 ◽  
Author(s):  
Jian Wu Yu ◽  
Tao Chen ◽  
Zhen Tao Shang ◽  
Xiao Min Sheng ◽  
Gui Zhi Xie

This paper focuses on experimental investigation on high speed grinding of 40 Cr steel with vitrified CBN grinding wheel, the effect of grinding process parameters, such as grinding speed, depth of cut, and feed rate, on the grinding force and surface roughness are analyzed The experimental results reveal that the grinding force decreases with higher grinding speed and increases with the addition of depth of cut or feed rate, and the surface roughness is satisfactory in high speed grinding.


2015 ◽  
Vol 667 ◽  
pp. 130-135
Author(s):  
Xue Sun ◽  
Tian Biao Yu ◽  
Wan Shan Wang

In order to study the influence of grinding surface quality affected by grinding speed for CBN grinding wheel, the method of simulation and experimentation used to study grinding surface quality of CBN grinding wheel. First, on the basis of grinding wheel topography, the influence of grinding surface quality affected by grinding speed was analyzed by adopting motion simulation method. Then, high-speed grinding experiment was carried out to three kinds of metal materials, and machined surface roughness and surface hardness after processing are measured and researched. Test shows that “speed effect” is remarkable in grinding metal materials. As the grinding speed increases, the grinding surface quality of workpiece is gradually improved. With the speed increasing, surface roughness of workpiecedecreases, and at lower speeds the surface roughness dropped more obvious. With grinding speed increases further, the change of roughness tends to be slow, and the bending point appears at about 100m/s.Surface hardening degree decreases with grinding speed increasing, when grinding speed up to high-speed grinding stage, the degree of hardening of the workpiece is more soothing.


2015 ◽  
Vol 764-765 ◽  
pp. 289-293
Author(s):  
Yi Chang Wu ◽  
Han Ting Hsu

This paper presents the magnetostatic field analysis of a coaxial magnetic gear device proposed by Atallah and Howe. The structural configuration and speed reduction ratio of this magnetic gear device are introduced. The 2-dimensional finite-element analysis (2-D FEA), conducted by applying commercial FEA software Ansoft/Maxwell, is performed to evaluate the magnetostatic field distribution, especially for the magnetic flux densities within the outer air-gap. Once the number of steel pole-pieces equals the sum of the pole-pair numbers of the high-speed rotor and the low-speed rotor, the coaxial magnetic gear device possesses higher magnetic flux densities, thereby generating greater transmitted torque.


2011 ◽  
Vol 399-401 ◽  
pp. 1806-1811
Author(s):  
Yong Hong Chen ◽  
Peng Chen ◽  
Ai Qin Tian

The finite element model of the roof of aluminum high-speed train was established, double ellipsoid heat source was employed, and heat elastic-plastic theory was used to simulate welding residual stress of the component under different welding sequence based on the finite element analysis software SYSWELD. The distribution law of welding residual stress was obtained. And the effects of the welding sequence on the value and distribution of residual stress was analyzed. The numerical results showed that the simulation data agree well with experimental test data. The maximum residual stress appears in the weld seam and nearby. The residual stress value decreases far away from the welding center. Welding sequence has a significant impact on the final welding residual stress when welding the roof of aluminum body. The side whose residual stress needs to be controlled should be welded first.


Author(s):  
Jifeng Wang ◽  
Qubo Li ◽  
Norbert Mu¨ller

A mechanical and optimal analyses procedure is developed to assess the stresses and deformations of Novel Wound Composite Axial-Impeller under loading conditions particular to centrifuge. This procedure is based on an analytical method and Finite Element Analysis (FEA, commercial software ANSYS) results. A low-cost, light-weight, high-performance, composite turbomachinery impeller from differently designed patterns will be evaluated. Such impellers can economically enable refrigeration plants using water as a refrigerant (R718). To create different complex patterns of impellers, MATLAB is used for creating the geometry of impellers, and CAD software UG is used to build three-dimensional impeller models. Available loading conditions are: radial body force due to high speed rotation about the cylindrical axis and fluid forces on each blade. Two-dimensional plane stress and three-dimensional stress finite element analysis are carried out using ANSYS to validate these analytical mechanical equations. The von Mises stress is investigated, and maximum stress and Tsai-Wu failure criteria are applied for composite material failure, and they generally show good agreement.


Sign in / Sign up

Export Citation Format

Share Document