A Soil Water Characteristic Curve Model Considering Urea Concentration

2013 ◽  
Vol 798-799 ◽  
pp. 157-160
Author(s):  
You Le Wang ◽  
Dong Fang Tian ◽  
Gai Qing Dai ◽  
Yao Ruan ◽  
Lang Tian

A new soil water characteristic curve (SWCC) model considering urea concentration is presented in the paper. Two assumptions are used to obtain the model. One is SWCC which could be described by exponential functions in the experiments. Another is relationship between the parameters of exponential functions and urea concentration which is linear based on experimental data. In the research, we have carried out some experiments of SWCC and obtained some valuable data which could affect urea concentration. By using linear fitting, an exponential function between water content and suction and urea concentration is established.

2014 ◽  
Vol 919-921 ◽  
pp. 795-799
Author(s):  
Gai Qing Dai ◽  
Dong Fang Tian ◽  
Yao Ruan ◽  
Lang Tian ◽  
You Le Wang

A new soil water characteristic curve (SWCC) experiment contemplating urea concentration is presented in the paper. We focus on the impact of the SWCC considering urea concentration test method for materials selection and introduction, experimental results, and finally, we have conducted some experiments of SWCC and obtained some valuable data which could affect urea concentration. By using linear fitting, an exponential function between water content and suction and urea concentration is established.


2010 ◽  
Vol 12 (3) ◽  
pp. 336-341
Author(s):  
Fei CAI ◽  
Xiaohou SHAO ◽  
Zhenyu WANG ◽  
Mingyong HUANG ◽  
Yaming ZHAI ◽  
...  

2011 ◽  
Vol 261-263 ◽  
pp. 1039-1043
Author(s):  
Yu You Yang ◽  
Qin Xi Zhang ◽  
Gui He Wang ◽  
Jia Xing Yu

A soil water characteristic curve (SWCC) can describe the relationship between unsaturated soil matric suction and water content. By analyzing and researching the test data of the soil water characteristic curve researchers can initially establish the SWCC equation and apply this equation to the actual engineering analysis. In another words, this article is based on the fluid-solid coupling theory of unsaturated soil used to analyze and study the problem of land subsidence caused by tunnel construction. Numerical calculations show that the coupling results agree well with the measured curve works.


2010 ◽  
pp. 453-459 ◽  
Author(s):  
Em_ke Imre ◽  
Kalman Rajkai ◽  
R Genovese ◽  
C Jommi

2011 ◽  
Vol 312-315 ◽  
pp. 1172-1177 ◽  
Author(s):  
A. Topa Gomes ◽  
A. Viana Da Fonseca ◽  
A. Silva Cardoso

The seepage analysis in geotechnical problems, namely in excavations, was typically performed assuming saturated conditions in the ground. It is now know that the flow in the non saturated part of the ground assumes also relevant importance and hence it is vital to characterize its behaviour. The Soil Water Characteristic Curve (SWCC) of the soil is probably the most important parameter in defining this behaviour and particularly for estimating the permeability of the soil. This paper presents the definition of the SWCC for a granite residual soil using pressure plates and the filter paper method. Based on experimental data some equations are adjusted and the results obtained are discussed. At the end of the paper some predictions of the non saturated permeability of the ground are also performed.


2020 ◽  
Author(s):  
Xiao Zhang ◽  
Wenwu Zhao ◽  
Paulo Pereira

<p>The soil available water content (AWC) has a strong ability to indicate the soil water conditions under different land cover types. Although the AWC has long been calculated, soil water characteristic curve estimation models and the distribution of AWC, as well as the impact factors, have rarely been evaluated in the Loess Plateau of China. In this study, four typical land cover types were selected: introduced shrubland, introduced grassland, natural restored shrubland and natural restored grassland. Four widely used models were compared with the van Genuchten (VG) model, including the Arya and Paris (AP) model, Mohammadi and Vanclooster (MV) model, Tyler and Wheatcraft (TW) model, and linear fitting (LF) model to estimate the wilting point. The distribution of AWC and the relationships with environmental factors were measured and analyzed. The results showed the following: (1) the MV model was the most suitable model to estimate the soil water characteristic curve in the Loess Plateau; (2) the factors impacting the AWC varied under different precipitation gradients, and the area with a mean annual precipitation of 440-510 mm was the most sensitive zone to environmental and vegetation factors; and (3) the soil water deficit was more severe when considering AWC than when considering soil water content (SWC), and the water deficits were different under introduced grassland and introduced shrubland. Consequently, the construction of vegetation restoration should be more cautious and consider the trade-off between soil conservation and water conservation. During restoration, policy makers should focus on the AWC in addition to the SWC to better assess the soil moisture status.</p>


2011 ◽  
Vol 90-93 ◽  
pp. 701-706
Author(s):  
Jing Song Qian ◽  
Hang Lu

The soil-water characteristic defines the relationship between the soil suction and gravimetric water content, w, or the volumetric water content, θ, or the degree of saturation, S. It is a convenient method to predict water content in the subgrade using the curve. But in the field tests of subgrades, the compaction degree of soil became lower with time than initially designed. With the purpose of finding out effect of compaction degree on soil-water characteristic curve, a study to the SWCC (soil-water characteristic curve) of Chongming low liquid limit clay using filter paper method was carried out and is presented in this paper. Specimens of different water contents were prepared by absorbing different amount of water, in order to better simulate the process of wetting of subgrade soil. After the filter paper test, the soil-water characteristic curve was fitted with two models, and then the effect of compaction degree on the curve was analyzed. The figures show that the compaction degree of the specimen will decrease with higher water content, and from the gravimetric water content-matric suction curve, it is found that compaction degree has an effect on air-entry value and water storage capacity.


Sign in / Sign up

Export Citation Format

Share Document